Development of neurologic itch signature
神经性瘙痒特征的发展
基本信息
- 批准号:10193704
- 负责人:
- 金额:$ 17.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAntipruriticsAttentionBiologicalBiological MarkersBiological ProcessBrainBrain PathologyBrain imagingBrain regionCharacteristicsChildClinical TrialsComplexData SetDermatologicDevelopmentDiagnosisDiseaseDoseElderlyElementsFunctional Magnetic Resonance ImagingFunctional disorderFutureGoalsHospitalsHumanImpaired cognitionIndustryInfantInterventionMachine LearningMagnetic Resonance ImagingMeasuresMedicineModernizationMorbidity - disease rateNeurologicPainPatient Self-ReportPatientsPatternPerformancePhysiciansProcessProtocols documentationPruritusPsyche structureReportingReproducibilityResearchResearch InstituteResearch ProposalsRestSensitivity and SpecificitySeveritiesSeverity of illnessSignal TransductionSpecificityStandardizationStimulusTestingTherapeuticTrainingUnited States National Institutes of HealthWorkbasebiomarker developmentchronic itchcostdiagnosis qualityexpectationglobal healthimprovedindividual patientmachine learning algorithmneurotransmissionnoninvasive brain stimulationnovelphrasesprimary endpointprogramspsychologicsuccesstargeted treatmenttreatment effecttreatment trial
项目摘要
Abstract: Chronic itch is a global health problem affecting tens of millions of people worldwide. However, there
is no objective biomarker to assess itch. Since itch results from activity in brain circuits through the participation
of many brain regions, we suggest developing specific brain biomarkers to assess the disease states and
treatment effects using functional brain imaging and machine learning. Developments of biomarkers are one of
the great advances of modern allopathic medicine. In itch treatment, assessment of itch is an important
indicator in understanding the progress of chronic itch and treatment effect. Currently, itch assessment is
based almost exclusively on patients' self-reports, which is inherently limited by the complex relationship
between biological pruriceptive (itch-related) processes and patients' verbal or written descriptions of itch. In
particular, self-report is not applicable for people who have a limited capacity to report itch such as infants, very
young children, and elderly people with cognitive impairments. Addressing chronic itch is becoming a central
morbidity in many dermatological diseases and a primary endpoint in clinical trials. Therefore, there is a great
need to develop a reliable biomarker for itch. Itch-related neural signals are a fundamental element of the itch
sensation. Measuring these signals can be a reliable biomarker for itch. Recent advancement of brain imaging
combined with machine learning algorithms has enabled development of brain activity-based biomarkers to
assess various mental activities and brain functions. This advancement, together with ongoing progress of low-
cost & high-performance MRI, will expand the feasibility of practical use of fMRI in medicine. A brain activity-
based biomarker for itch (i.e., Neurologic Itch Signature, NIS) may dramatically improve the quality of
diagnoses, treatments and clinical trials. Moreover, the NIS can be a promising biomarker for itch-related
processing in the brain, which enables to better understand the pathophysiology of chronic itch. The aim of our
research proposal is to develop the NIS. In particular, we will demonstrate (1) that the NIS will selectively
respond to itch (i.e., unresponsive to pain) and (2) that the NIS can predict not only an existence of itch but
also itch intensity, as these are fundamental requirements of biomarker for itch. To achieve this goal, we will
obtain datasets of brain activity during various intensities of itch and pain stimuli and resting condition by using
functional MRI (fMRI), and identify a characteristic brain activity pattern for itch (i.e., the NIS) by analyzing the
datasets using a machine learning algorithm. We will test whether the created NIS can predict itch and severity
of itch without prior information. The NIS will accelerate itch research and improve quality of diagnosis and
treatment of itch, which will eventually help the many people who suffer from chronic itch.
摘要:慢性瘙痒是一个全球健康问题,影响了全球数千万人。但是,那里
没有客观的生物标志物评估瘙痒。由于瘙痒是由脑电路的活动引起的
在许多大脑区域中,我们建议开发特定的脑生物标志物来评估疾病状态和
使用功能性脑成像和机器学习的治疗效果。生物标志物的发展是
现代同种疗法医学的巨大进步。在瘙痒治疗中,瘙痒评估是重要的
了解慢性瘙痒和治疗效果的进展的指标。目前,瘙痒评估是
几乎完全基于患者的自我报告,该报告固有地受到复杂关系的限制
在生物学上(瘙痒相关)过程与患者的言语或书面描述之间。在
特别是,自我报告不适用于报告瘙痒能力有限的人,例如婴儿,非常
幼儿和认知障碍的老年人。解决慢性瘙痒正在成为中心
许多皮肤病性疾病的发病率和临床试验的主要终点。因此,有一个很棒的
需要为瘙痒开发可靠的生物标志物。瘙痒相关的神经信号是瘙痒的基本元素
感觉。测量这些信号可能是瘙痒的可靠生物标志物。大脑成像的最新进展
结合机器学习算法使基于大脑活动的生物标志物的发展得以发展
评估各种心理活动和大脑功能。这一进步,以及低 -
成本和高性能MRI将扩大fMRI在医学中实际使用的可行性。大脑活动 -
基于瘙痒的生物标志物(即神经系统瘙痒签名,NIS)可能会显着提高
诊断,治疗和临床试验。此外,NIS可能是与瘙痒有关的有希望的生物标志物
大脑中的处理,这使得能够更好地了解慢性瘙痒的病理生理学。我们的目的
研究建议是开发NIS。特别是,我们将证明(1)NIS将有选择地
回应瘙痒(即对疼痛无反应)和(2)NIS不仅可以预测瘙痒的存在,还可以预测
此外,瘙痒强度是生物标志物对瘙痒的基本要求。为了实现这一目标,我们将
在各种瘙痒和疼痛刺激和静止状态的各种强度时,获得大脑活动的数据集
功能性MRI(fMRI),并通过分析瘙痒(即NIS)的特征性脑活动模式
使用机器学习算法的数据集。我们将测试创建的NIS是否可以预测瘙痒和严重性
没有事先信息的瘙痒。 NIS将加速瘙痒研究并提高诊断的质量和
瘙痒的治疗,最终将帮助许多患有慢性瘙痒的人。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hideki Mochizuki其他文献
Hideki Mochizuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hideki Mochizuki', 18)}}的其他基金
Itch-specific brain circuit and dopaminergic gene polymorphisms influencing individual differences in itch perception
瘙痒特异性脑回路和多巴胺能基因多态性影响瘙痒感知的个体差异
- 批准号:
10735592 - 财政年份:2023
- 资助金额:
$ 17.47万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Targeting TRP channels for novel topical treatment of atopic dermatitis
靶向 TRP 通道用于特应性皮炎的新型局部治疗
- 批准号:
10005547 - 财政年份:2020
- 资助金额:
$ 17.47万 - 项目类别:
Topical selective T-type blockers for the treatment of pruritus
局部选择性 T 型阻滞剂治疗瘙痒
- 批准号:
9907737 - 财政年份:2019
- 资助金额:
$ 17.47万 - 项目类别:
Generation of knockin mice expressing KOPR conjugated with a fluorescent protein
表达与荧光蛋白缀合的 KOPR 的敲入小鼠的产生
- 批准号:
8623020 - 财政年份:2014
- 资助金额:
$ 17.47万 - 项目类别:
Generation of knockin mice expressing KOPR conjugated with a fluorescent protein
表达与荧光蛋白缀合的 KOPR 的敲入小鼠的产生
- 批准号:
8836513 - 财政年份:2014
- 资助金额:
$ 17.47万 - 项目类别: