Identification of Brain Circuit Markers for Psychosis in Alzheimer's Disease by Leveraging Big Data and Machine Learning
利用大数据和机器学习识别阿尔茨海默病精神病的脑回路标志物
基本信息
- 批准号:10192576
- 负责人:
- 金额:$ 23.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-30 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlzheimer&aposs DiseaseAlzheimer&aposs disease patientArtificial IntelligenceBig DataBiological MarkersBrainBrain imagingCaregiversClassificationClinicalClinical PsychologyCognitiveDataData SetDevelopmentDiagnosisDiseaseEtiologyGoalsHumanIndividualInvestigationKnowledgeLeadLearningMachine LearningMeasuresModelingNeurobiologyPatientsPersonsPhenotypePsychiatryPsychological TransferPsychosesPublic HealthReproducibility of ResultsResearchResearch PersonnelSamplingSchizophreniaTestingUniversitiesValidationWorkbig-data scienceclinically relevantcognitive controlcognitive functioncomputer frameworkconnectomedeep learningeffective therapyimprovedinnovationlearning strategymultidisciplinaryneuroimagingneuropsychiatric symptomnovelopen sourcepersonalized diagnosticsphenotypic dataprecision medicinepredictive markerpsychotic symptomsrelating to nervous systemtranslational neurosciencetreatment strategy
项目摘要
Psychotic symptoms are among the most common and persistent neuropsychiatric symptoms in Alzheimer’s
disease, affecting over 50% of patients with Alzheimer’s disease. Yet, the etiology of psychosis in Alzheimer’s
disease is still poorly understood and systematic investigations have been hampered by small samples and
lack of reproducible findings. Critically, robust biomarkers are needed to understand the origins/progression of
psychosis in Alzheimer’s disease, and to identify targets for treatment. Newly available human neurobiological
data offer an unprecedented opportunity for developing robust and predictive biomarkers for psychosis in
Alzheimer’s disease. The overarching goal of our proposal is to identify robust and predictive biomarkers for
psychosis in Alzheimer’s disease using a novel data-driven computational framework. Specifically, we will use
a transformative “Big Data” science approach combining exciting recent advances in deep learning and our
recent work on quantitative dynamic brain circuit analyses with a wealth of newly available large-scale open-
source brain imaging and phenotypic data from multiple consortia, as well as data we have acquired at
Stanford University. To achieve these goals, we propose four aims. In Aim 1, we will develop and validate a
novel data-driven computational framework for identifying neurobiological features that distinguish between
groups, leveraging recent advances in deep learning and brain circuit dynamics. In Aim 2, we will identify
neurobiological features that distinguish idiopathic psychosis (schizophrenia) from neurotypical controls, using
our validated computational framework and “Big” data from schizophrenia. In Aim 3, we will identify
neurobiological features that distinguish Alzheimer’s disease patients with psychosis from Alzheimer’s disease
patients without psychosis, using our validated computational framework and data from Alzheimer’s disease
and schizophrenia. In Aim 4, we will identify neurobiological features that predict onset of psychosis in
Alzheimer’s disease. The proposed studies are highly synergistic with the goals of the PAR-20-159, which
aims to “enhance knowledge of mechanisms associated with neuropsychiatric symptoms in persons with
Alzheimer’s disease”. Through the successful completion of the work described here, the proposed studies will
transform our understanding of brain circuit mechanisms underlying psychosis in Alzheimer’s disease, and
crucially, provide a new computational framework for improved mechanistic understanding of other
neuropsychiatric symptoms in Alzheimer’s disease. Ultimately, these advances will lead to better diagnosis and
more effective treatments for neuropsychiatric symptoms in Alzheimer’s disease and, more broadly, advance
precision medicine.
精神病症状是阿尔茨海默氏症中最常见和持续的神经精神症状之一
疾病,影响超过50%的阿尔茨海默氏病患者。然而,阿尔茨海默氏症的精神病病因
疾病仍然很少了解,系统的调查受到小样本的阻碍,
缺乏可再现的发现。至关重要的是,需要强大的生物标志物来了解
阿尔茨海默氏病的精神病,并确定治疗靶标。新近获得的人类神经生物学
数据为开发可用于精神病的强大和预测生物标志物提供了前所未有的机会
阿尔茨海默氏病。我们提案的总体目标是确定可靠和预测性的生物标志物
阿尔茨海默氏病的精神病使用了新型数据驱动的计算框架。具体来说,我们将使用
一种变革性的“大数据”科学方法,结合了令人兴奋的深度学习和我们的最新进展
关于定量动态大脑电路分析的最新工作,并进行了大量新的大规模开放的研究
来自多个财团的源脑成像和表型数据,以及我们在
斯坦福大学。为了实现这些目标,我们提出了四个目标。在AIM 1中,我们将开发和验证
新型数据驱动的计算框架,用于识别区分神经生物学特征
小组,利用深度学习和脑电路动态的最新进展。在AIM 2中,我们将确定
使用特发性精神病(精神分裂症)与神经型控制的神经生物学特征,使用
我们验证的计算框架和精神分裂症的“大”数据。在AIM 3中,我们将确定
神经生物学特征将阿尔茨海默氏病的精神病患者与阿尔茨海默氏病区分开
没有精神病的患者,使用我们经过验证的计算框架和来自阿尔茨海默氏病的数据
和精神分裂症。在AIM 4中,我们将确定可预测精神病发作的神经生物学特征
阿尔茨海默氏病。拟议的研究与Par-20-159的目标高度协同作用,
旨在“增强对与神经精神症状相关的机制的了解
阿尔茨海默氏病”。通过成功完成此处描述的工作,拟议的研究将
改变我们对阿尔茨海默氏病精神病的脑电路机制的理解,并
至关重要的是,提供了一个新的计算框架,以改善对其他的机械理解
阿尔茨海默氏病的神经精神症状。最终,这些进步将导致更好的诊断和
对阿尔茨海默氏病的神经精神症状的更有效治疗
精密医学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kaustubh Satyendra Supekar其他文献
Kaustubh Satyendra Supekar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kaustubh Satyendra Supekar', 18)}}的其他基金
Identification of Brain Circuit Markers for Psychosis in Alzheimer's Disease by Leveraging Big Data and Machine Learning
利用大数据和机器学习识别阿尔茨海默病精神病的脑回路标志物
- 批准号:
10491260 - 财政年份:2021
- 资助金额:
$ 23.61万 - 项目类别:
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 23.61万 - 项目类别:
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 23.61万 - 项目类别:
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 23.61万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 23.61万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 23.61万 - 项目类别: