Machine Learning-Guided Engineering of Protease Modulators

机器学习引导的蛋白酶调节剂工程

基本信息

  • 批准号:
    10353932
  • 负责人:
  • 金额:
    $ 21.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary Modulating the activity of proteases is a central strategy for treating cancer, autoimmunity, and infection. However, the discovery and design of selective and potent therapeutics targeting proteases (small-molecules and antibodies) largely rely on inefficient, iterative processes. As a result, it takes several years to develop a protease drug, and even then, most protease drugs are active site inhibitors that often suffer from low selectivity in distinguishing related proteases. Due to the complexity of proteolytic dysregulation, restoring homeostasis requires not only selective inhibitors but also ligands that can reprogram protease selectivity. Unfortunately, no platform exists to engineer protease modulators based on systematic, and quantitative design principles. To address these challenges, this proposal seeks to combine for the first time Machine Learning tools, Next- Generation DNA sequencing, and a yeast-based high-throughput functional screen to accelerate the isolation and design of nanobody-based protease modulators. The functional selection will perform two tasks: (i) select nanobodies from synthetic libraries based on a desired function and (ii) correlate ligand: epitope interactions to a functional outcome. These experiments will generate high-quality datasets that will train machine learning algorithms (ML) to predict the potency, selectivity, and mechanisms of nanobody-based modulators based on their sequence features alone. This machine learning-aided strategy will accelerate the discovery of rare and potent protease modulators and bypass the limitations of structure-based methods. Moreover, curated datasets of protease modulatory nanobody sequences will provide reference and design guidelines for future experimental and in silico campaigns. This work is of significant interest to biomedical research and public health and includes select proteases such as Hepatitis C virus protease, MMPs, transmembrane serine protease 2 (COVID-19), β-secretase, and insulin-degrading enzyme. Moreover, the proposed studies provide a foundation to answering fundamental biochemical questions on how synthetic ligands can map and modulate the functional landscape of proteases and other protein-modifying enzymes.
项目摘要 调节蛋白酶的活性是治疗癌症,自身免疫性和感染的核心策略。但是, 靶向蛋白酶(小分子和抗体)的选择性和潜在疗法的发现和设计很大程度上依赖 关于无效的迭代过程。结果,开发蛋白酶药物需要几年的时间,即使那样,大多数蛋白酶也需要数年 药物是活跃的部位抑制剂,在区分相关蛋白酶中通常患有低选择性。由于 蛋白水解失调的复杂性,恢复稳态不仅需要选择性抑制剂,还需要配体 可以重新编程蛋白酶选择性。不幸的是,基于系统的蛋白酶调节剂的工程蛋白酶调节剂不存在平台 和定量设计原理。 为了应对这些挑战,该建议旨在为第一次机器学习工具合并,然后 生成DNA测序和基于酵母的高通量功能屏幕,以加速隔离和 基于纳米的蛋白酶调节剂的设计。功能选择将执行两个任务:(i)选择纳米机 从基于所需功能的合成库和(ii)相关的配体:表位相互作用与功能结果。 这些实验将生成高质量的数据集,该数据集将训练机器学习算法(ML)以预测 仅基于纳米机制调节剂的效力,选择性和机制仅基于其序列特征。 这种机器学习辅助策略将加速发现罕见和有效的蛋白酶调节剂, 绕过基于结构的方法的局限性。此外,蛋白酶调节纳米赛序列的策划数据集 将为未来的实验和计算机运动提供参考和设计指南。这项工作很重要 对生物医学研究和公共卫生的兴趣,包括丙型肝炎病毒蛋白酶,MMP,包括精选蛋白酶 跨膜丝氨酸蛋白酶2(COVID-19),β-分泌酶和胰岛素降解酶。此外,拟议的研究 提供一个基础,以回答有关合成配体如何映射和调节的基本生化问题 蛋白质和其他蛋白质修饰酶的功能景观。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carl Denard其他文献

Carl Denard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carl Denard', 18)}}的其他基金

Reprogramming proteases: tackling human diseases with next-generation modulators
重编程蛋白酶:用下一代调节剂应对人类疾病
  • 批准号:
    10709575
  • 财政年份:
    2022
  • 资助金额:
    $ 21.94万
  • 项目类别:
AWD13299 Admin Supplement to Support Undergraduate Summer Research Experiences
AWD13299 支持本科生暑期研究经历的管理补充
  • 批准号:
    10808664
  • 财政年份:
    2022
  • 资助金额:
    $ 21.94万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Emerging mechanisms of viral gene regulation from battles between host and SARS-CoV-2
宿主与 SARS-CoV-2 之间的战斗中病毒基因调控的新机制
  • 批准号:
    10725416
  • 财政年份:
    2023
  • 资助金额:
    $ 21.94万
  • 项目类别:
Structural and functional characterization of glycosyltransferases in the Campylobacter concisus N-linked glycoconjugate biosynthetic pathway
弯曲杆菌 N 连接糖复合物生物合成途径中糖基转移酶的结构和功能表征
  • 批准号:
    10607139
  • 财政年份:
    2023
  • 资助金额:
    $ 21.94万
  • 项目类别:
Development of Selective Oxidative Biocatalytic Methods
选择性氧化生物催化方法的发展
  • 批准号:
    10606798
  • 财政年份:
    2023
  • 资助金额:
    $ 21.94万
  • 项目类别:
Towards a Quantum-Mechanical Understanding of Redox Chemistry in Proteins
对蛋白质氧化还原化学的量子力学理解
  • 批准号:
    10606459
  • 财政年份:
    2023
  • 资助金额:
    $ 21.94万
  • 项目类别:
Research and cloud deployment of enhanced sampling methods in MovableType
MovableType中增强采样方法的研究和云部署
  • 批准号:
    10699159
  • 财政年份:
    2023
  • 资助金额:
    $ 21.94万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了