Development of Machine Learning Algorithms to Assess and Train Vesico-Urethral Anastomosis during Robot Assisted Radical Prostatectomy
开发机器学习算法来评估和训练机器人辅助根治性前列腺切除术期间的膀胱尿道吻合术
基本信息
- 批准号:9982955
- 负责人:
- 金额:$ 19.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-21 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptedAffectAnastomosis - actionAreaArtificial IntelligenceAwardChairpersonCharacteristicsClinicalCollaborationsComplementComplexComputer softwareConsumptionCredentialingDataData AnalysesDevelopmentEducationEducational InterventionEducational PsychologyEvaluationEventFellowshipFoundationsFundingFutureGillsGoalsGoldGrantHandHome environmentHospitalsIndividualInstitutesInterventionIntuitionLearningMachine LearningMalignant NeoplasmsMalignant neoplasm of prostateMeasuresMedical ResearchMentored Patient-Oriented Research Career Development AwardMentorsMentorshipMeta-AnalysisMethodsModelingMorbidity - disease rateMotionMovementOperative Surgical ProceduresPatient-Focused OutcomesPatientsPerformancePositioning AttributeProceduresProcessProgram DevelopmentProstate Cancer therapyRadical ProstatectomyResearchResearch DesignResourcesRiskRobotRoboticsScientistSpecialistSurgeonTechniquesTestingTimeTrainingUnited StatesUnited States National Institutes of HealthUrethraUrologic Surgical ProceduresUrologyWorkauthoritybaseburden of illnesscareercareer developmentclinically significantcognitive taskcommon treatmentcomplex data computer programdata reductionexperiencefunctional outcomesimprovedinnovationkinematicsmachine learning algorithmmalenovelpatient safetypeerreconstructionresearch and developmentrobot assistanceskillssuccesstask analysisurologicvirtual realityvirtual reality simulation
项目摘要
PROJECT SUMMARY/ABSTRACT
CANDIDATE (Andrew J. Hung, MD): My long-term goal is to establish a career in innovating training methods
for robotic surgery which will lead to curtailing surgeon learning curve, and maximize patient safety. My first
step towards that goal focuses on understanding objective metrics that measure surgeon performance, and
how machine learning algorithms can process that data to guide training. I have developed a career
development program that builds on my clinical training in robotic urologic surgery and prior research in
surgical training. Through mentorship, a fellowship, and formal coursework, this K23 award will provide me the
necessary support to develop expertise in 3 areas where I do not have formal training, yet are critical to my
success: (1) Machine learning; (2) Surgical education; (3) Advanced statistical skills and study design.
MENTORING TEAM: My career development and research plans leverage existing institutional resources,
including the USC Machine Learning Center, led by co-primary mentor Dr. Yan Liu; and Keck Hospital of USC,
the second busiest robotic center by volume in the United States and the USC Institute of Urology (led by co-
primary mentor and chairman Dr. Inderbir Gill), home to pioneers of several urologic surgical techniques with
a robust research apparatus supporting several NIH-funded clinical scientists. My mentoring team is
complemented by co-mentor Dr. Robert Sweet, a DOD-funded expert on surgical education; career mentor
Dr. Larissa Rodriguez, a federally funded clinician/scientist experienced in mentoring K awardees;
educational psychology collaborator Dr. Kenneth Yates, an authority on cognitive task analysis; and
consultant Dr. Anthony Jarc, at Intuitive Surgical who has supported much of the pilot data on objective
performance metrics. The proposed K23 work truly requires the robust collaboration of experts in robotic
surgery, education, and machine learning. RESEARCH: The learning curve for surgeons performing robot
assisted radical prostatectomy (RARP) is steep: over 100 cases. Current ‘gold standard’ methods of surgical
assessment rely on subjective expert review, but such evaluations are time consuming and inconsistent.
Nonetheless, credentialing a surgeon to perform robotic surgery has enormous implications - patient outcomes
are at risk, and a surgeon’s career is on the line. Informed by my clinical expertise in robotic urological surgery
and preliminary data, I will develop a novel method of utilizing machine learning (ML) algorithms to
objectively assess robotic surgeon performance and to guide training for the vesico-urethral
anastomosis (VUA), the most critical reconstructive part of the robot-assisted radical prostatectomy (RARP). I
will develop and validate objective metrics directly captured from the da Vinci robot during the VUA (Aim 1),
train machine learning algorithms to assess a surgeon’s performance of VUA (Aim 2), and utilize ML
algorithms to guide surgeons learning the VUA (Aim 3). Armed with these data and skills from this award, I will
be uniquely suited to utilize machine learning to generalize objective surgeon assessment for robot-assisted
surgical procedures within and beyond urology. Finally, the results from this study will provide preliminary data
for independent funding through mechanisms such as an NIH R01 grant.
项目摘要/摘要
候选人(医学博士Andrew J. Hung):我的长期目标是建立创新培训方法的职业
用于机器人手术,这将导致减少外科医生的学习曲线,并最大程度地提高患者的安全性。我的第一个
朝向该目标的一步侧重于理解衡量外科医生绩效的客观指标,并且
机器学习算法如何处理该数据以指导培训。我发展了职业
开发计划是基于我在机器人泌尿外科手术和先前研究的临床培训的基础上
手术训练。通过心态,奖学金和正式课程,该K23奖将为我提供
在我没有正规培训的3个领域中发展专业知识的必要支持,但对我来说至关重要
成功:(1)机器学习; (2)手术教育; (3)高级统计技能和研究设计。
指导团队:我的职业发展和研究计划利用现有的机构资源,
包括由共同培训者Yan Liu博士领导的USC机器学习中心;和加州大学的凯克医院
美国第二次最繁忙的机器人中心在美国和USC泌尿外科研究所(由共同领导
主要导师兼董事长Inderbir Gill博士),是几种泌尿外科手术技术的先驱者的所在地
支持数位NIH资助的临床科学家的强大研究机构。我的心理团队是
由DOD资助的外科教育专家Robert Sweet博士完成;职业导师
Larissa Rodriguez博士是一位经验丰富的心理K获奖者的临床/科学家;
教育心理学合作者肯尼斯·耶茨(Kenneth Yates)博士,认知任务分析的权威;和
Intuitive Surgical的Anthony Jarc顾问Anthony Jarc博士支持了有关目标的许多试点数据
性能指标。拟议的K23工作确实需要机器人专家的强大合作
手术,教育和机器学习。研究:表演机器人的外科医生的学习曲线
辅助根治性前列腺切除术(RARP)是钢:超过100例。当前的“金标准”手术方法
评估依赖于主观专家审查,但是这种评估既耗时又不一致。
尽管如此,对外科医生进行机器人手术的认证具有巨大的影响 - 患者的结果
处于危险之中,外科医生的职业生涯也在。由我的机器人泌尿科手术专业知识得知
和初步数据,我将开发一种使用机器学习(ML)算法的新方法
客观地评估机器人外科医生的表现,并指导Vesico-prethral的培训
吻合术(VUA),这是机器人辅助的根治性前列腺切除术(RARP)中最关键的重建部分。
将在VUA期间直接从DA Vinci机器人捕获的目标指标并验证目标指标(AIM 1),
训练机器学习算法评估外科医生的VUA表现(AIM 2),并使用ML
指导外科医生学习VUA的算法(AIM 3)。凭借该奖项中的这些数据和技能,我将
非常适合利用机器学习来概括客观的外科医生评估机器人辅助
泌尿外科内外的手术程序。最后,这项研究的结果将提供初步数据
通过NIH R01赠款等机制进行独立资金。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Road to automating robotic suturing skills assessment: Battling mislabeling of the ground truth.
- DOI:10.1016/j.surg.2021.08.014
- 发表时间:2022-04
- 期刊:
- 影响因子:3.8
- 作者:Hung AJ;Rambhatla S;Sanford DI;Pachauri N;Vanstrum E;Nguyen JH;Liu Y
- 通讯作者:Liu Y
Surgeon Automated Performance Metrics as Predictors of Early Urinary Continence Recovery After Robotic Radical Prostatectomy-A Prospective Bi-institutional Study.
- DOI:10.1016/j.euros.2021.03.005
- 发表时间:2021-05
- 期刊:
- 影响因子:2.5
- 作者:Hung AJ;Ma R;Cen S;Nguyen JH;Lei X;Wagner C
- 通讯作者:Wagner C
Reply to Nikolaos Grivas, Nikolaos Kalampokis, and Henk van der Poel's Letter to the Editor re: Loc Trinh, Samuel Mingo, Erik B. Vanstrum, et al. Survival Analysis Using Surgeon Skill Metrics and Patient Factors to Predict Urinary Continence Recovery Afte
回复 Nikolaos Grivas、Nikolaos Kalampokis 和 Henk van der Poel 给编辑的信:Loc Trinh、Samuel Mingo、Erik B. Vanstrum 等人。
- DOI:10.1016/j.euf.2021.06.011
- 发表时间:2022
- 期刊:
- 影响因子:5.4
- 作者:Hung,AndrewJ
- 通讯作者:Hung,AndrewJ
Innovations in Urologic Surgical Training.
- DOI:10.1007/s11934-021-01043-z
- 发表时间:2021-03-13
- 期刊:
- 影响因子:2.6
- 作者:Ma R;Reddy S;Vanstrum EB;Hung AJ
- 通讯作者:Hung AJ
Survival Analysis Using Surgeon Skill Metrics and Patient Factors to Predict Urinary Continence Recovery After Robot-assisted Radical Prostatectomy.
- DOI:10.1016/j.euf.2021.04.001
- 发表时间:2022-03
- 期刊:
- 影响因子:5.4
- 作者:Trinh L;Mingo S;Vanstrum EB;Sanford DI;Aastha;Ma R;Nguyen JH;Liu Y;Hung AJ
- 通讯作者:Hung AJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Hung其他文献
Andrew Hung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Hung', 18)}}的其他基金
Automated Assessment for Robotic Suturing Utilizing Deep Learning Algorithms
利用深度学习算法自动评估机器人缝合
- 批准号:
10951308 - 财政年份:2021
- 资助金额:
$ 19.23万 - 项目类别:
Automated Assessment for Robotic Suturing Utilizing Deep Learning Algorithms
利用深度学习算法自动评估机器人缝合
- 批准号:
10594534 - 财政年份:2021
- 资助金额:
$ 19.23万 - 项目类别:
Automated Assessment for Robotic Suturing Utilizing Deep Learning Algorithms
利用深度学习算法自动评估机器人缝合
- 批准号:
10379385 - 财政年份:2021
- 资助金额:
$ 19.23万 - 项目类别:
Automated Assessment for Robotic Suturing Utilizing Deep Learning Algorithms
利用深度学习算法自动评估机器人缝合
- 批准号:
10208178 - 财政年份:2021
- 资助金额:
$ 19.23万 - 项目类别:
Development of Machine Learning Algorithms to Assess and Train Vesico-Urethral Anastomosis during Robot Assisted Radical Prostatectomy
开发机器学习算法来评估和训练机器人辅助根治性前列腺切除术期间的膀胱尿道吻合术
- 批准号:
9767765 - 财政年份:2018
- 资助金额:
$ 19.23万 - 项目类别:
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
跨期决策中偏好反转的影响因素及作用机制:采用体验式实验范式的综合研究
- 批准号:72271190
- 批准年份:2022
- 资助金额:43 万元
- 项目类别:面上项目
农民合作社视角下组织支持、个人规范对农户化肥农药减量增效技术采用行为的影响机制研究
- 批准号:72103054
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
采用磁共振技术研究帕金森病蓝斑和黑质神经退变及其对大脑结构功能的影响
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 19.23万 - 项目类别:
Regulation of human tendon development and regeneration
人体肌腱发育和再生的调节
- 批准号:
10681951 - 财政年份:2023
- 资助金额:
$ 19.23万 - 项目类别:
Implementation and Implications of Sickle Cell Trait Screening in the NCAA
镰状细胞性状筛查在 NCAA 中的实施及其意义
- 批准号:
10842764 - 财政年份:2023
- 资助金额:
$ 19.23万 - 项目类别:
Optimizing integration of veterinary clinical research findings with human health systems to improve strategies for early detection and intervention
优化兽医临床研究结果与人类健康系统的整合,以改进早期检测和干预策略
- 批准号:
10764456 - 财政年份:2023
- 资助金额:
$ 19.23万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 19.23万 - 项目类别: