Genetics and quantum chemistry as tools for unknown metabolite identification
遗传学和量子化学作为未知代谢物鉴定的工具
基本信息
- 批准号:10180966
- 负责人:
- 金额:$ 85.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:Animal ModelAnimalsAreaBiochemical PathwayBiologicalCRISPR/Cas technologyCaenorhabditis elegansChemicalsChromatographyComplexComputer ModelsDNA sequencingDataData AnalyticsDevelopmentDiseaseFutureGenesGeneticGenetic ModelsGenomeGenomic DNAGenotypeHomologous GeneHumanIndividualLaboratoriesMalignant NeoplasmsMass Spectrum AnalysisMeasurementMeasuresMechanicsMedicalMetabolic PathwayModelingModernizationModificationMolecularNMR SpectroscopyNatural ProductsNuclear Magnetic ResonanceOther GeneticsPathway interactionsPatternPhasePopulationPreparationPropertyPublishingResolutionResourcesSamplingScienceStandardizationStructureSystemTechniquesTechnologyTestingTimeTranslatingValidationbasecost effectivedesigngenetic associationgenome wide association studyhuman diseaseimprovedinsightmetabolomemetabolomicsmutantneglectnovelprecision medicinequantumquantum chemistryrelational databasespectroscopic datatheoriestool
项目摘要
Overall: Our project combines the significant advantages of a genetic model organism, sophisticated pathway
mapping tools, high-throughput and accurate quantum chemistry (QM), and state-of-the-art experimental
measurements. The result will be an efficient and cost-effective approach for unknown compound identification
in metabolomics, which is one of the major limitations facing this growing field of medical science.
Caenorhabditis elegans has several advantages for this study, including over 10,000 available genetic
mutants, well-developed CRISPR/Cas9 technology, and a panel of over 500 wild C. elegans isolates with
complete genomes. Half of C. elegans genes have homologs to human disease genes, making this model
organism an outstanding choice to improve our understanding of metabolic pathways in human disease. We
will develop an automated pipeline for sample preparation to reproducibly measure tens of thousands of
unknown features by UHPLC-MS/MS. We will use the wild isolates to conduct metabolome-wide genetic
association studies (m-GWAS), and SEM-path to locate unknowns in pathways using partial correlations. The
relevance of the unknown metabolites to specific pathways will be tested by measuring UHPLC-MS/MS data
from genetic mutants of those pathways. Molecular formula and pathway information will be the inputs for
automated quantum mechanical calculations of all possible structures, which will be used to accurately
calculate NMR chemical shifts that will be matched to experimental data. The correct structures will be
validated by comparing them with 2D NMR data of the same compound. The validated computed structures
will then be used to improve QM-based MS/MS fragment prediction, using the experimental UHPLC-MS/MS
data.
This project will enhance many areas of science beyond worms and model organisms. First, C. elegans is the
simplest animal model available with significant homology to other animals and humans. The discoveries we
make in metabolic pathways will have a direct impact on studies of several human diseases. Second, our
approach is highly transferable to other genetic systems and with little modification can be applied to many
other applications. Perhaps most important is the relevance to large-scale human precision medicine studies.
The wild C. elegans isolates are “individuals” with diverse genomes that are a model for natural populations
such as humans. It is true that we are using mutant animals that would not be available in a human precision
medicine study, but the mutants are used primarily to validate pathways that are constructed entirely by wild
isolate data. Once the approaches are fully developed and validated, the mutants will not be necessary. C.
elegans and other genetic model organisms were instrumental in the development of modern genomics and
DNA sequencing technologies. Our premise is that the worm will have a comparable impact in metabolomics.
总体而言:我们的项目结合了遗传模型有机体的重要优势,复杂的途径
映射工具,高通量和准确的量子化学(QM)以及最先进的实验
测量。结果将是未知化合物识别的有效且具有成本效益的方法
在代谢组学中,这是这一医学科学领域面临的主要局限性之一。
秀丽隐杆线虫在这项研究中具有多个优点,包括10,000多个可用的通用
突变体,发达的CRISPR/CAS9技术,以及一组超过500个野生秀丽隐杆线虫分离株
完整的基因组。一半的秀丽隐杆线虫基因对人类疾病基因具有同源性,使该模型
有机体是提高我们对人类疾病代谢途径的理解的出色选择。我们
将开发自动管道以进行样品准备,以重现数以万计的测量
UHPLC-MS/MS的未知功能。我们将使用野生分离株进行全代代谢组的通用
结合研究(M-GWAS)和SEM-Path使用部分相关在途径中定位未知数。
未知代谢物与特定途径的相关性将通过测量UHPLC-MS/MS数据来测试
来自这些途径的基因突变体。分子公式和途径信息将是
所有可能的结构的自动量子机械计算将用于准确
计算NMR化学位移将与实验数据相匹配。正确的结构将是
通过将它们与同一化合物的2D NMR数据进行比较来验证。经过验证的计算结构
然后,将使用实验性UHPLC-MS/MS用于改善基于QM的MS/MS片段预测
数据。
该项目将增强科学领域的许多领域,而不是蠕虫和模型生物。首先,秀丽隐藏是
最简单的动物模型可与其他动物和人类具有重要同源性。我们的发现
在代谢途径中的成分将对几种人类疾病的研究产生直接影响。第二,我们的
方法被高度转移到其他遗传系统,并且几乎没有修改可以应用于许多人
其他应用程序。也许最重要的是与大型人类精确医学研究的相关性。
野生秀丽隐杆线虫分离株是具有潜水基因组的“个体”,这是自然种群的模型
例如人类。的确,我们正在使用不可用人类精确度的突变动物
医学研究,但突变体主要用于验证完全由野生构建的途径
隔离数据。一旦方法得到充分开发和验证,突变体将无需。 C
秀丽隐杆线虫和其他遗传模型生物有助于现代基因组学和
DNA测序技术。我们的前提是蠕虫将对代谢组学产生可比的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ARTHUR S EDISON其他文献
ARTHUR S EDISON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ARTHUR S EDISON', 18)}}的其他基金
Portal for Open Computational Metabolomics Tools - Yr 4 U2C Supplement
开放计算代谢组学工具门户 - 第四年 U2C 补充材料
- 批准号:
10397265 - 财政年份:2018
- 资助金额:
$ 85.58万 - 项目类别:
Genetics and quantum chemistry as tools for unknown metabolite identification
遗传学和量子化学作为未知代谢物鉴定的工具
- 批准号:
9767153 - 财政年份:2018
- 资助金额:
$ 85.58万 - 项目类别:
Genetics and quantum chemistry as tools for unknown metabolite identification
遗传学和量子化学作为未知代谢物鉴定的工具
- 批准号:
10173229 - 财政年份:2018
- 资助金额:
$ 85.58万 - 项目类别:
Genetics and quantum chemistry as tools for unknown metabolite identification
遗传学和量子化学作为未知代谢物鉴定的工具
- 批准号:
10012972 - 财政年份:2018
- 资助金额:
$ 85.58万 - 项目类别:
Genetics and quantum chemistry as tools for unknown metabolite identification
遗传学和量子化学作为未知代谢物鉴定的工具
- 批准号:
10254709 - 财政年份:2018
- 资助金额:
$ 85.58万 - 项目类别:
Development of a high-sensitivity 13C NMR probe for metabolomics
开发用于代谢组学的高灵敏度 13C NMR 探针
- 批准号:
9238907 - 财政年份:2016
- 资助金额:
$ 85.58万 - 项目类别:
Southeast Resource Center for Integrated Metabolomics (SECIM)
东南综合代谢组学资源中心 (SECIM)
- 批准号:
8732635 - 财政年份:2013
- 资助金额:
$ 85.58万 - 项目类别:
相似国自然基金
臂旁核区域损伤致长时程“昏迷样”动物模型建立及神经机制研究
- 批准号:81901068
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
三江源大型野生食草动物对区域草畜平衡状态影响及管控机制研究
- 批准号:41971276
- 批准年份:2019
- 资助金额:58 万元
- 项目类别:面上项目
基于组蛋白H3K9me3和DNA甲基化修饰协同作用研究早期胚胎发育过程中基因印记区域的调控
- 批准号:31801059
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
使用三代测序技术研究线粒体DNA非编码区域对其DNA复制和转录的调控
- 批准号:31701089
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
转录因子Msx1与哺乳动物上腭发育的前-后区域化
- 批准号:31771593
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Anti-flavivirus B cell response analysis to aid vaccine design
抗黄病毒 B 细胞反应分析有助于疫苗设计
- 批准号:
10636329 - 财政年份:2023
- 资助金额:
$ 85.58万 - 项目类别:
Targeting Myosin to Treat Polycystic Kidney Disease
靶向肌球蛋白治疗多囊肾
- 批准号:
10699859 - 财政年份:2023
- 资助金额:
$ 85.58万 - 项目类别:
The Role of Glycosyl Ceramides in Heart Failure and Recovery
糖基神经酰胺在心力衰竭和恢复中的作用
- 批准号:
10644874 - 财政年份:2023
- 资助金额:
$ 85.58万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 85.58万 - 项目类别:
Metal-free, genetically encoded reporters for calcium recording with MRI
用于 MRI 钙记录的无金属基因编码报告基因
- 批准号:
10660042 - 财政年份:2023
- 资助金额:
$ 85.58万 - 项目类别: