LifeSense: Transforming Behavioral Assessment of Depression Using Personal Sensing Technology
LifeSense:利用个人感知技术改变抑郁症的行为评估
基本信息
- 批准号:9982127
- 负责人:
- 金额:$ 82.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerometerAlgorithmsAmericanAnhedoniaAreaBehaviorBehavior assessmentBehavioralBluetoothCar PhoneCellular PhoneClinicalCollaborationsCollectionComplementComplexComputer softwareDataData CollectionDatabasesDepressed moodDetectionDevelopmentDevicesDiagnosticDiseaseEcological momentary assessmentEnrollmentEtiologyEvaluationFatigueFutureGenomicsGeographyHome environmentHumanHuman ActivitiesIndividualInterviewLifeLightMachine LearningMeasurementMeasuresMedicalMental DepressionMental HealthMethodsMonitorMorbidity - disease rateMotivationMovementNoiseParticipantPatient Self-ReportPeriodicityPersonsPopulationPopulations at RiskPsychologistRecurrenceRewardsRunningSamplingSampling BiasesSeveritiesSleepSleep disturbancesSocial FunctioningStressStructureSymptomsSystemSystematic BiasTechniquesTelephoneTextTextilesTimeTranslatingbaseclinically relevantclinically significantcomputer sciencecostdepressive symptomsdesigndisabilityexperiencehealth applicationinnovationinsightmicrophonemortalitynegative moodnext generationnovelpleasurepredictive modelingpsychologicsensorsensor technologysingle episode major depressive disordersocialtooltouchscreentreatment responsewearable devicewireless fidelity
项目摘要
Abstract
Depression is common, costly, and a leading cause of disability. Assessment of behavior and experience related to
depression has tended to rely on self-report and interview-based methods. Environmental momentary assessment inserts
assessment into people's lives, but still requires active engagement by those being evaluated. We propose to develop and
validate a mobile phone-based personal sensing system to detect depression and related behaviors that relies on sensor
data that are collected continuously and unobtrusively. Because people tend to keep their phones with them, the mobile
phone is an ideal sensing platform, as it can continuously collect data in the context of the individual's life with no
ongoing effort on the part of the user. Such systems are already being used to detect simple behaviors, such as activity
recognition and sleep quantification, which are more proximal to the sensor data. Aim 1 will develop markers for a broad
range of behavioral targets related to symptoms of major depressive episode (MDE; anhedonia, negative mood, sleep
disruption, psychomotor activity, fatigue, and diminished concentration) and related domains (e.g. social functioning,
stress, motivation) across a representative sample of participants. Aim 2 will combine all behavioral targets using machine
learning to 1) estimate MDE and symptom severity cross-sectionally, 2) identify transition from non-depressed to
depressed states, and depressed to non-depressed states, and 3) predict MDE and symptom severity 4 and 8 weeks out.
Aim 3 will seek to understand the complex relationships among behavioral targets and depression. We will accomplish
this by enrolling 1200 representative participants, in six 4-month waves of data collection. Each participant will
download software that collects a wide variety of sensor data (GPS, accelerometry, light, Bluetooth, phone usage, etc.)
and an app that collects ecological momentary assessments (EMA). Following each wave we will develop algorithms for
a subset of behavioral targets and features (a definition of raw sensor data that incorporates meaning, like translating GPS
data into “home”). Each algorithm will then be validated in the subsequent wave. After 5 waves (1000 participants), the
set of all markers of behavioral targets and features will be combined using machine learning to detect and predict
depression. This hierarchical approach extracts information from data at multiple levels, which ultimately is far more
likely to succeed than relying solely on raw sensor data. The final wave will serve to replicate and validate the entire
depression prediction model. This sensing platform is scientifically significant, as it will provide a fundamentally new tool
for obtaining continuous, objective markers of behavior that are relevant to depression, as well as many other psychiatric
and medical disorders. This project has the potential develop new understandings into the etiology of depression. It is
clinically significant, as it will allow for continuous, effortless assessment of populations at risk for depression and
ongoing evaluation during treatment.
抽象的
抑郁症是常见的、代价高昂的,也是导致残疾的主要原因。
抑郁症往往依赖于自我报告和基于访谈的方法插入环境瞬时评估。
评估融入人们的生活,但仍需要被评估者的积极参与。
验证基于手机的个人传感系统,以检测依赖传感器的抑郁症和相关行为
持续且不引人注目地收集的数据,因为人们倾向于随身携带手机。
手机是一个理想的传感平台,因为它可以连续收集个人生活中的数据,而无需
用户不断努力,此类系统已被用于检测简单的行为,例如活动。
识别和睡眠量化,这更接近传感器数据,目标 1 将为更广泛的领域开发标记。
与重度抑郁发作症状相关的一系列行为目标(MDE;快感缺乏、消极情绪、睡眠
干扰、精神运动活动、疲劳和注意力不集中)和相关领域(例如社会功能、
目标 2 将使用机器结合所有行为目标。
学习 1) 横断面估计 MDE 和症状严重程度,2) 识别从非抑郁到抑郁的转变
抑郁状态,以及抑郁到非抑郁状态,3) 预测 4 周和 8 周后的 MDE 和症状严重程度。
我们将实现目标 3:了解行为目标与抑郁症之间的复杂关系。
为此,我们将招募 1200 名代表性参与者,进行六次为期 4 个月的数据收集。
下载收集各种传感器数据(GPS、加速度计、光、蓝牙、电话使用情况等)的软件
以及一个收集生态瞬时评估 (EMA) 的应用程序,我们将针对每一波开发算法。
行为目标和特征的子集(包含含义的原始传感器数据的定义,例如翻译 GPS
每个算法将在后续波次(1000 名参与者)后得到验证。
行为目标和特征的所有标记集将使用机器学习进行组合以检测和预测
这种分层方法从多个级别的数据中提取信息,最终得到的信息要多得多。
与仅仅依靠原始传感器数据相比,最后一波将有助于复制和验证整个过程。
该传感平台具有重要的科学意义,因为它将提供一种全新的工具。
用于获得与抑郁症以及许多其他精神病学相关的连续、客观的行为标记
该项目有可能对抑郁症的病因学产生新的认识。
具有临床意义,因为它将允许对有抑郁症风险的人群进行持续、轻松的评估
治疗期间持续评估。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantifying causality in data science with quasi-experiments.
- DOI:10.1038/s43588-020-00005-8
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Liu, Tony;Ungar, Lyle;Kording, Konrad
- 通讯作者:Kording, Konrad
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Konrad P. Kording其他文献
Measuring Causal Effects of Civil Communication without Randomization
在非随机化的情况下测量民间传播的因果效应
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Tony Liu;Lyle Ungar;Konrad P. Kording;Morgan McGuire - 通讯作者:
Morgan McGuire
A Probabilistic Model of Meetings That Combines Words and Discourse Features
结合词语和话语特征的会议概率模型
- DOI:
10.1109/tasl.2008.925867 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Mike Dowman;Virginia Savova;Thomas L. Griffiths;Konrad P. Kording;J. B. Tenenbaum;Matthew Purver - 通讯作者:
Matthew Purver
movement representations Statistical assessment of the stability of neural
运动表征神经稳定性的统计评估
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Ian H. Stevenson;Anil Cherian;B. M. London;N. Sachs;E. Lindberg;Jacob Reimer;M. Slutzky;N. Hatsopoulos;Lee E. Miller;Konrad P. Kording - 通讯作者:
Konrad P. Kording
Konrad P. Kording的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Konrad P. Kording', 18)}}的其他基金
Grassroots Rigor: making rigorous research practices accessible, meaningful, and building a community around them
草根严谨:使严格的研究实践变得可行、有意义,并围绕它们建立一个社区
- 批准号:
10673711 - 财政年份:2022
- 资助金额:
$ 82.24万 - 项目类别:
Grassroots Rigor: making rigorous research practices accessible, meaningful, and building a community around them
草根严谨:使严格的研究实践变得可行、有意义,并围绕它们建立一个社区
- 批准号:
10513441 - 财政年份:2022
- 资助金额:
$ 82.24万 - 项目类别:
Massive scale electrical neural recordings in vivo using commercial ROIC chips
使用商用 ROIC 芯片进行大规模体内电神经记录
- 批准号:
9558974 - 财政年份:2017
- 资助金额:
$ 82.24万 - 项目类别:
Massive scale electrical neural recordings in vivo using commercial ROIC chips
使用商用 ROIC 芯片进行大规模体内电神经记录
- 批准号:
9011964 - 财政年份:2015
- 资助金额:
$ 82.24万 - 项目类别:
Massive scale electrical neural recordings in vivo using commercial ROIC chips
使用商用 ROIC 芯片进行大规模体内电神经记录
- 批准号:
9146823 - 财政年份:2015
- 资助金额:
$ 82.24万 - 项目类别:
Neural Mechanisms of Fixation Choice while Searching Natural Scenes
搜索自然场景时注视选择的神经机制
- 批准号:
8297707 - 财政年份:2012
- 资助金额:
$ 82.24万 - 项目类别:
Neural Mechanisms of Fixation Choice while Searching Natural Scenes
搜索自然场景时注视选择的神经机制
- 批准号:
8451290 - 财政年份:2012
- 资助金额:
$ 82.24万 - 项目类别:
Neural Mechanisms of Fixation Choice while Searching Natural Scenes
搜索自然场景时注视选择的神经机制
- 批准号:
8634100 - 财政年份:2012
- 资助金额:
$ 82.24万 - 项目类别:
Neural Mechanisms of Fixation Choice while Searching Natural Scenes
搜索自然场景时注视选择的神经机制
- 批准号:
8822295 - 财政年份:2012
- 资助金额:
$ 82.24万 - 项目类别:
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高效非完全信息对抗性团队博弈求解算法研究
- 批准号:62376073
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
SpeechSense: An Interactive Sensor Platform for Speech Therapy
SpeechSense:用于言语治疗的交互式传感器平台
- 批准号:
10256832 - 财政年份:2022
- 资助金额:
$ 82.24万 - 项目类别:
Automated System for Accurate Determination of Activities of Daily Living for Independently-Living Persons with Alzheimers Disease and Related Dementias
用于准确确定患有阿尔茨海默病和相关痴呆症的独立生活者的日常生活活动的自动化系统
- 批准号:
10543933 - 财政年份:2022
- 资助金额:
$ 82.24万 - 项目类别:
Development of a cloud-based network of smartwatch applications to improve cardiopulmonary resuscitation during cardiac arrest response.
开发基于云的智能手表应用程序网络,以改善心脏骤停反应期间的心肺复苏。
- 批准号:
10541288 - 财政年份:2021
- 资助金额:
$ 82.24万 - 项目类别:
Using Artificial Intelligence to Optimize Delivery of Weight Loss Treatment
使用人工智能优化减肥治疗的实施
- 批准号:
10400867 - 财政年份:2021
- 资助金额:
$ 82.24万 - 项目类别:
Using Artificial Intelligence to Optimize Delivery of Weight Loss Treatment
使用人工智能优化减肥治疗的实施
- 批准号:
10210830 - 财政年份:2021
- 资助金额:
$ 82.24万 - 项目类别: