Signal Integration from Membranes to the Actin Cytoskeleton
从膜到肌动蛋白细胞骨架的信号整合
基本信息
- 批准号:9982353
- 负责人:
- 金额:$ 37.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAreaBindingBiochemicalBiochemistryBiological ProcessBiologyCellular biologyComplexCytoskeletonDataDefectDevelopmental BiologyDiseaseEukaryotic CellFamilyFoundationsGlutamate ReceptorGuanosine Triphosphate PhosphohydrolasesImmunologic Deficiency SyndromesImmunologyIndividualInfectionKnowledgeLigandsLinkMalignant NeoplasmsMediatingMembraneNeoplasm MetastasisNeuronsNeurosciencesPlayPolymersProcessRecombinantsRegulationResearchRoleSignal PathwaySignal TransductionSiteStructureSystemTherapeuticVesicleWorkcell motilitykainatenervous system disordernovelpathogenreceptorreconstitutiontargeted treatmenttrafficking
项目摘要
Signaling from membranes to the actin cytoskeleton underpins a myriad of processes, such as cell migration
and vesicle trafficking, and its dysregulation leads to various diseases, including cancer and neurological dis-
orders. The WAVE Regulatory Complex (WRC) of ~400 kDa plays a central role in linking membrane signals
to the actin cytoskeleton throughout biology. The WRC alone is autoinhibited, but a large variety of membrane
ligands can activate the complex through direct interactions, which, in turn, stimulates the Arp2/3 complex to
polymerize actin. These ligands include the GTPases Rac1 and Arf1, and over 100 different membrane pro-
teins previously identified by the applicant. Despite this long list of WRC ligands and their broad biological func-
tions, it remains unknown how these membrane molecules, individually or cooperatively, control WRC’s activity
and thereby actin assembly. One major challenge is to biochemically reconstitute the multivalent, weak interac-
tions of the WRC with its ligands, especially with its canonical activators Rac1 and Arf1. Preliminary data
demonstrate that it is now possible to reconstitute stable WRC/ligand complexes by using recombinant materi-
al and by different tethering strategies. The unique access to such material will enable determination of the bi-
ochemical and structural mechanisms mediating WRC activation. Preliminary data suggest that activation of
the WRC requires simultaneous binding of two Rac1 molecules at two distinct sites and that the activation is
enhanced by a third interaction with Arf1. Other membrane ligands may further modulate the activation by in-
teractions at additional, distinct sites. My lab will target three major aspects of WRC activation by biochemical
and structural approaches. Project 1 will determine the structure of the WRC simultaneously bound to two
Rac1 molecules. This will reveal the first activated structure of the WRC and will provide a mechanistic frame-
work for understanding WRC activation. Project 2 will combine biochemical and structural approaches to define
how the WRC is activated by Arf1 and how Arf1 and Rac1 act cooperatively to optimize activation. This will re-
veal new mechanisms of WRC activation and open new avenues for understanding actin regulation in many
processes controlled by the Arf family of GTPases. Project 3 will discover novel interaction mechanisms of the
WRC with three newly identified membrane ligands, including the claudin-like receptor HPO-30, the neuronal
receptor Retrolinkin, and the kainate family of glutamate receptors. This will reveal new modes of actin regula-
tion mediated by membrane receptors and the WRC. Together, by generating previously unattainable material
and by closely integrating quantitative biochemistry and structural approaches, successful completion of this
work will provide a comprehensive, unifying framework for understanding WRC activation, knowledge that will
be broadly applicable to many different cellular systems and biological processes widely regulated by this sig-
naling hub and its many ligands. Our work will also provide new structural targets for therapeutics and will have
a broad impact in areas ranging from cell biology and immunology to neuroscience and developmental biology.
从膜到肌动蛋白细胞骨架的信号传导基于无数过程,例如细胞迁移
和囊泡运输及其失调导致各种疾病,包括癌症和神经系统疾病
订单。 〜400 kDa的波调节络合物(WRC)在链接膜信号中起着核心作用
在整个生物学过程中致肌动蛋白的细胞骨架。仅WRC可自动抑制,但各种膜
配体可以通过直接相互作用激活复合物,进而刺激ARP2/3复合物
聚合肌动蛋白。这些配体包括GTPases Rac1和arf1,以及100多种不同的膜pro-
TEIN先前由应用程序确定。尽管有一长串的WRC配体及其广泛的生物学功能
这些膜分子如何单独或合作地控制WRC的活动仍然未知
从而使肌动蛋白大会。一个主要挑战是生化重构多价,弱的间
WRC及其配体的特征,特别是其规范激活剂Rac1和arf1。初步数据
证明现在有潜力通过使用重组材料来重建稳定的WRC/配体配合物
al和不同的绑扎策略。获得此类材料的独特访问将使您能够确定
介导WRC激活的精元和结构机制。初步数据表明激活
WRC需要在两个不同位点同时结合两个Rac1分子,并且激活是
通过与ARF1的第三次相互作用增强。其他膜配体可能会进一步调节
在附加不同的地点的teractions。我的实验室将通过生化针对WRC激活的三个主要方面
和结构方法。项目1将确定wrc简单绑定到两个的结构
Rac1分子。这将揭示WRC的第一个激活结构,并提供机械框架 -
为理解WRC激活的工作。项目2将结合生化和结构方法来定义
ARF1激活WRC的方式以及ARF1和Rac1如何合作以优化激活。这将重新
小牛肉WRC激活的新机制和开放的新途径,以了解许多人的肌动蛋白调节
由ARF家族控制的过程。项目3将发现新颖的互动机制
WRC具有三个新鉴定的膜配体,包括类似克劳丁的接收器HPO-30,神经元
受体后氧蛋白和谷氨酸受体的海藻酸盐家族。这将揭示肌动蛋白调节的新模式 -
由膜接收器和WRC介导的。一起,通过产生以前无法实现的材料
通过紧密整合定量生物化学和结构方法,成功完成了
工作将为理解WRC激活,知识提供一个全面,统一的框架
广泛适用于许多不同的细胞系统和生物学过程,该过程广泛调节
Naling Hub及其许多配体。我们的工作还将为治疗学提供新的结构目标,并将
从细胞生物学和免疫学到神经科学和发育生物学的领域都有广泛的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Baoyu Chen其他文献
Baoyu Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Baoyu Chen', 18)}}的其他基金
Mechanisms of host leukocyte-mediated Toxoplasma dissemination in its host
宿主白细胞介导的弓形虫在宿主体内传播的机制
- 批准号:
10623334 - 财政年份:2022
- 资助金额:
$ 37.55万 - 项目类别:
Signal Integration from Membranes to the Actin Cytoskeleton
从膜到肌动蛋白细胞骨架的信号整合
- 批准号:
10217192 - 财政年份:2018
- 资助金额:
$ 37.55万 - 项目类别:
Signal Integration from Membranes to the Actin Cytoskeleton
从膜到肌动蛋白细胞骨架的信号整合
- 批准号:
10470730 - 财政年份:2018
- 资助金额:
$ 37.55万 - 项目类别:
Signal Integration from Membranes to the Actin Cytoskeleton
从膜到肌动蛋白细胞骨架的信号整合
- 批准号:
9751336 - 财政年份:2018
- 资助金额:
$ 37.55万 - 项目类别:
Signal Integration from Membranes to the Actin Cytoskeleton
从膜到肌动蛋白细胞骨架的信号整合
- 批准号:
10623679 - 财政年份:2018
- 资助金额:
$ 37.55万 - 项目类别:
相似国自然基金
定向金属结合区域的倒捻子素类PDE4抑制剂:类药性优化及抗肺纤维化作用研究
- 批准号:22277019
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
定向金属结合区域的倒捻子素类PDE4抑制剂:类药性优化及抗肺纤维化作用研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
高光谱遥感与地面观测数据结合的区域甘蔗糖分估算研究
- 批准号:42105175
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
ERβ结合区域遗传变异与结直肠癌发病风险的机制研究
- 批准号:
- 批准年份:2020
- 资助金额:57 万元
- 项目类别:面上项目
基于“区域资源高效协同机制”作用的医养结合养老社区中医疗功能空间配置研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Cytoskeleton-mediated regulation of insulin secretion hot spots in pancreatic beta cells
细胞骨架介导的胰腺β细胞胰岛素分泌热点的调节
- 批准号:
10679903 - 财政年份:2023
- 资助金额:
$ 37.55万 - 项目类别:
Identifying mechanistic pathways underlying RPE pathogenesis in models of pattern dystrophy
识别模式营养不良模型中 RPE 发病机制的机制途径
- 批准号:
10636678 - 财政年份:2023
- 资助金额:
$ 37.55万 - 项目类别:
The role of biomolecular condensates in regulating the cytoskeleton.
生物分子缩合物在调节细胞骨架中的作用。
- 批准号:
10751631 - 财政年份:2023
- 资助金额:
$ 37.55万 - 项目类别:
Affinity purification of cross-ß fibrils using immobilized thioflavin
使用固定化硫代黄素对交叉原纤维进行亲和纯化
- 批准号:
10646061 - 财政年份:2023
- 资助金额:
$ 37.55万 - 项目类别:
Role of microglial lysosomes in amyloid-A-beta degradation
小胶质细胞溶酶体在淀粉样蛋白-A-β降解中的作用
- 批准号:
10734289 - 财政年份:2023
- 资助金额:
$ 37.55万 - 项目类别: