A New View of PAH Allostery - Correlation with Disease-Associated Alleles
PAH 变构的新观点 - 与疾病相关等位基因的相关性
基本信息
- 批准号:9981023
- 负责人:
- 金额:$ 39.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AchievementActive SitesAddressAffectAllelesAllosteric RegulationAllosteric SiteArchitectureBasic ScienceBindingBinding SitesBiochemicalBirthBloodCell Culture SystemClassical phenylketonuriaConsensusCrystallizationCrystallographyDevelopmentDiseaseEnvironmental PollutionEnzyme KineticsEnzymesEquilibriumExposure toFluorescenceFunctional disorderFutureGenotypeHeterogeneityHeterozygoteHomology ModelingHumanHyperphenylalaninaemiasIn VitroInborn Errors Amino Acid MetabolismInborn Errors of MetabolismIndividualIon-Exchange Chromatography ProcedureKnowledgeLengthLibrariesLifeMedicalMethodsModelingMolecularMolecular ChaperonesMolecular ConformationNervous System PhysiologyNeurologic DysfunctionsOnline Mendelian Inheritance In ManPharmaceutical PreparationsPharmacologyPhenotypePhenylalaninePhenylalanine HydroxylasePhenylketonuriasPhysiologicalPopulationPorphobilinogen SynthaseProtein BiosynthesisProteinsPublicationsPublishingRattusRegulationResearchRestRoentgen RaysRotationShapesSiteStructureStructure-Activity RelationshipSurfaceTestingTherapeuticTyrosineVariantWorkX-Ray Crystallographyanalytical ultracentrifugationbasebiophysical analysisbiophysical techniquesdesigndimerimprovedin silicoinnovationmolecular shapemouse modelneurobehavioralneurotoxicnovelnovel therapeuticspredictive modelingpreventprotein foldingprotein intakereproductiveresponsescreeningsmall moleculesocialtherapeutic development
项目摘要
PROJECT SUMMARY
Dysfunction of phenylalanine hydroxylase (PAH) is the most common inborn error of amino acid metabolism
and the underlying cause of phenylketonuria (PKU). By converting phenylalanine (Phe) to tyrosine, PAH
maintains blood Phe at levels sufficient for protein biosynthesis, but below neurotoxic levels. Regulation is
accomplished by allosteric activation by Phe. Based on extensive studies of individuals living with PKU, the
current medical consensus is to control blood Phe levels throughout life to achieve and maintain normal
neurological function; this argues for a better understanding of PAH structure/function relationships to support
both the understanding of existing pharmacological chaperones for PAH and the future development of novel
non-dietary therapeutics. In 2013 we introduced an innovative conformational selection model of PAH allostery
that includes a resting-state tetramer, an architecturally distinct activated tetramer, and smaller assemblies;
only activated PAH contains the allosteric Phe binding site. This site is at a multimer-specific subunit-subunit
interface, the details of which remain unknown. Our model includes a previously unforeseen domain rotation,
which is now strongly supported by recently published biophysical studies. 2016 marks our publication of the
first crystal structure for full length resting-state mammalian PAH; this is a long-awaited contribution to the field.
Small angle X-ray scattering (SAXS) supports both resting state PAH and Phe-stabilized activated PAH
tetramer structures, and confirms a major conformational difference between the two, which is consistent with
our allosteric model. The current application builds on these achievements. In AIM 1 we address the
relevance of our allosteric model to disease. We test whether specific common disease-associated PAH
variants are defective in the transition between resting-state and activated PAH and thus insensitive to
allosteric activation by Phe. This hypothesis is a major departure from the conventional view of PKU as a
protein folding/stability disorder. In AIM 2 we determine the structure of activated PAH using X-ray
crystallography and SAXS, and we extend our work with rat PAH to human PAH using a designed variant. In
AIM 3 we identify substances that can modulate PAH function (negatively or positively) by stabilizing either
resting-state or activated PAH. Using in vitro methods, we will screen approved drugs and environmental
contaminants, exposure to which can confound PKU phenotype. We use in silico screening of libraries of
drug-like molecules to provide leads for future development of new PKU therapies. All AIMS employ
established biochemical and biophysical methods to assess wild-type, disease-associated, and designed PAH
variants for the transition from resting to activated states. Key methods include intrinsic protein fluorescence,
SAXS, analytical ultracentrifugation, crystallography, native PAGE, enzyme kinetics, and the innovative use of
ion exchange chromatography to resolve conformationally distinct PAH multimers. Our broad approach will
yield new and important information applicable to a better understanding of the molecular bases for PKU.
项目概要
苯丙氨酸羟化酶(PAH)功能障碍是最常见的氨基酸代谢先天性错误
以及苯丙酮尿症 (PKU) 的根本原因。通过将苯丙氨酸 (Phe) 转化为酪氨酸,PAH
将血液 Phe 维持在足以进行蛋白质生物合成的水平,但低于神经毒性水平。规定是
通过 Phe 的变构激活来完成。根据对 PKU 患者的广泛研究,
目前的医学共识是终生控制血液 Phe 水平以达到并维持正常
神经功能;这表明需要更好地理解 PAH 结构/功能关系以支持
对现有 PAH 药理伴侣的了解以及新型药物的未来发展
非饮食疗法。 2013年我们推出了创新的PAH变构构象选择模型
其中包括一个静息态四聚体、一个结构独特的激活四聚体和更小的组装体;
只有活化的 PAH 才含有变构 Phe 结合位点。该位点位于多聚体特异性亚基-亚基处
接口,其细节仍未知。我们的模型包括以前未预见到的域旋转,
最近发表的生物物理学研究有力地支持了这一点。 2016 年我们出版了
全长静息态哺乳动物 PAH 的第一个晶体结构;这是对该领域期待已久的贡献。
小角度 X 射线散射 (SAXS) 支持静息态 PAH 和 Phe 稳定的活化 PAH
四聚体结构,并证实了两者之间的主要构象差异,这与
我们的变构模型。当前的应用程序建立在这些成就的基础上。在 AIM 1 中,我们解决了
我们的变构模型与疾病的相关性。我们测试是否与特定的常见疾病相关的 PAH
变异体在静息态和活化态 PAH 之间的转换方面存在缺陷,因此对
Phe 的变构激活。这一假设与北京大学作为一所大学的传统观点大相径庭。
蛋白质折叠/稳定性障碍。在 AIM 2 中,我们使用 X 射线确定活化 PAH 的结构
晶体学和 SAXS,我们使用设计的变体将大鼠 PAH 的工作扩展到人类 PAH。在
AIM 3 我们确定可以通过稳定以下物质来调节 PAH 功能(消极或积极)的物质:
静息状态或激活的 PAH。使用体外方法,我们将筛选批准的药物和环境
污染物,接触这些污染物可能会混淆 PKU 表型。我们使用计算机筛选文库
类药物分子为未来开发新的 PKU 疗法提供线索。所有 AIMS 均雇用
建立了评估野生型、疾病相关型和设计型 PAH 的生化和生物物理方法
从静止状态过渡到激活状态的变体。关键方法包括内在蛋白质荧光、
SAXS、分析超速离心、晶体学、非变性 PAGE、酶动力学以及创新使用
离子交换色谱法可解析构象不同的 PAH 多聚体。我们的广泛方法将
产生新的重要信息,可用于更好地了解 PKU 的分子基础。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Wrangling Shape-Shifting Morpheeins to Tackle Disease and Approach Drug Discovery.
- DOI:10.3389/fmolb.2020.582966
- 发表时间:2020
- 期刊:
- 影响因子:5
- 作者:Jaffe EK
- 通讯作者:Jaffe EK
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
EILEEN K JAFFE其他文献
EILEEN K JAFFE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('EILEEN K JAFFE', 18)}}的其他基金
A New View of PAH Allostery - Correlation with Disease-Associated Alleles
PAH 变构的新观点 - 与疾病相关等位基因的相关性
- 批准号:
9547552 - 财政年份:2016
- 资助金额:
$ 39.79万 - 项目类别:
A New View of PAH Allostery - Correlation with Disease-Associated Alleles
PAH 变构的新观点 - 与疾病相关等位基因的相关性
- 批准号:
9350419 - 财政年份:2016
- 资助金额:
$ 39.79万 - 项目类别:
Low Activity Oligomers of Porphobilinogen Synthase as Antibiotic Targets
作为抗生素靶标的胆色素原合酶的低活性寡聚物
- 批准号:
8069778 - 财政年份:2009
- 资助金额:
$ 39.79万 - 项目类别:
Low Activity Oligomers of Porphobilinogen Synthase as Antibiotic Targets
作为抗生素靶标的胆色素原合酶的低活性寡聚物
- 批准号:
7935543 - 财政年份:2009
- 资助金额:
$ 39.79万 - 项目类别:
Hexameric PBGS as a Bioterrorism Defense
六聚 PBGS 作为生物恐怖主义防御手段
- 批准号:
7036579 - 财政年份:2005
- 资助金额:
$ 39.79万 - 项目类别:
Hexameric PBGS as a Bioterrorism Defense
六聚 PBGS 作为生物恐怖主义防御手段
- 批准号:
6853243 - 财政年份:2005
- 资助金额:
$ 39.79万 - 项目类别:
相似海外基金
Near-IR Ratiometric Fluorescence Probes for Assessing Cargo Delivery to Prostate Tumors
用于评估前列腺肿瘤的货物输送的近红外比率荧光探针
- 批准号:
10328982 - 财政年份:2021
- 资助金额:
$ 39.79万 - 项目类别:
Near-IR Ratiometric Fluorescence Probes for Assessing Cargo Delivery to Prostate Tumors
用于评估前列腺肿瘤的货物输送的近红外比率荧光探针
- 批准号:
10112677 - 财政年份:2021
- 资助金额:
$ 39.79万 - 项目类别:
Determining structural features of a collagen lysyl hydroxylase that promotes lung cancer metastasis
确定促进肺癌转移的胶原赖氨酰羟化酶的结构特征
- 批准号:
10471895 - 财政年份:2020
- 资助金额:
$ 39.79万 - 项目类别:
Determining structural features of a collagen lysyl hydroxylase that promotes lung cancer metastasis
确定促进肺癌转移的胶原赖氨酰羟化酶的结构特征
- 批准号:
10216420 - 财政年份:2020
- 资助金额:
$ 39.79万 - 项目类别:
Determining structural features of a collagen lysyl hydroxylase that promotes lung cancer metastasis
确定促进肺癌转移的胶原赖氨酰羟化酶的结构特征
- 批准号:
10261533 - 财政年份:2020
- 资助金额:
$ 39.79万 - 项目类别: