Unbiased identification of spliceosome vulnerabilities across cancer
公正地鉴定癌症中剪接体的脆弱性
基本信息
- 批准号:9978007
- 负责人:
- 金额:$ 44.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:Abnormal KaryotypeAcute Myelocytic LeukemiaAdultAlternative SplicingApoptoticBindingBinding SitesBiological MarkersCause of DeathChildChildhood Acute Myeloid LeukemiaCommunitiesComputing MethodologiesDataData SetDetectionDevelopmentDiseaseElementsEvaluationEventFunctional disorderGene ExpressionGene Expression RegulationGene RearrangementGeneticGenetic TranscriptionGrowthHematologic NeoplasmsHumanImmuneLearningLibrariesLinkMYC geneMalignant Childhood NeoplasmMalignant NeoplasmsMediatingMessenger RNAMethodsMethylationModelingMutationNeoplasm MetastasisNormal CellOncogenesOncogenicPathway interactionsPatient-Focused OutcomesPatientsPhosphotransferasesProtein IsoformsProteinsProteomicsRNARNA SplicingRecurrenceRecurrent Malignant NeoplasmRegulatory PathwayReproducibilityResearch PersonnelRoleSRSF2 geneSamplingSeriesSignal TransductionSolid NeoplasmSpliced GenesSpliceosomesSupervisionTP53 geneTechniquesTestingTherapeuticValidationWorkcancer genomicscancer subtypesdesigndriver mutationexperimental studygenetic variantgenomic variationimprovedinnovationinsightmultiple omicsneoplasm resourcenew therapeutic targetnovelnovel therapeutic interventionoutcome forecastoverexpressionprogramstooltranscriptometumor
项目摘要
PROJECT SUMMARY:
Although alternative splicing is one of the major drivers of cellular diversity and growth during development,
the splicing machinery can be hijacked in cancer to promote metastasis, immune escape, invasion and anti-
apoptotic actions. While splicing factor mutations occur in 1-15% of patients, depending on the cancer,
emerging data suggest that commonly dysregulated oncogenes such as MYC indirectly regulate mRNA
processing pathways leading to cancer promoting alternative splice isoforms in distinct malignancies. Using a
series of recently developed unsupervised splicing detection and candidate splicing regulatory prediction
techniques, we discovered that splicing is broadly disrupted in adult and pediatric cancers independent of
obvious splicing factor mutations. These data suggest a potentially paradigm shifting model, in which
widespread coordinated splicing dysfunction occurs across cancers, likely via imbalances in splicing factor
expression, signaling or genetic alternations. If true, spliceosome directed and upstream therapies may be
broadly repurposed across cancers, focused on specific splicing signatures and implicated regulatory
pathways rather than on specific mutations alone. To test these hypotheses and develop reusable analytical
resources for the cancer community, we propose the following aims.
Aim 1: Implicate key splicing pathway vulnerabilities with observed oncogenic events across
diverse cancers. We will characterize alternative splicing on a global-level with our existing integrative multi-
omics computational workflow across dozens of cancers and thousands of samples. Splicing events identified
using novel unsupervised or supervised analyses will be compared within and between distinct cancers as well
as normal cells of different origins to define reproducible tumor intrinsic vs. differentiation associated programs.
Aim 2: Define and validate the core splicing regulatory networks in pediatric AML and diverse
human cancers. We will build and validate a novel learning model to define the splicing regulatory network in
pediatric AML and ultimately across diverse adult and pediatric cancers. We will adapt current best practices
for multi-evidence transcriptional regulatory network inference to splicing and rigorously test our models with
validation data. A large library of experimental splicing factor binding datasets will be used to improve our
predictions. These analyses will identify novel splicing regulators and RNA recognition elements.
Aim 3: Build a discovery platform for precision splicing biomarker detection and selective splicing
target inhibition. We will develop an interactive computational interface to identify specific RNA isoforms
associated with poor prognosis splicing subtypes in diverse cancers obtained in Aim 1. By integrating splicing,
gene expression, proteomics and methylation data on the same patients, we will enable the discovery of
splicing events linked to diverse modes of gene regulation, that potentially manifest at the protein level.
Associated isoform interactions and weighted coexpression networks will be built to prioritize specific splicing
events in known cancer pathways.
项目概要:
尽管选择性剪接是发育过程中细胞多样性和生长的主要驱动因素之一,
剪接机制可以在癌症中被劫持,以促进转移、免疫逃逸、侵袭和抗-
凋亡行为。虽然剪接因子突变发生在 1-15% 的患者中,具体取决于癌症,
新出现的数据表明,常见的失调癌基因(例如 MYC)间接调节 mRNA
导致癌症的加工途径促进不同恶性肿瘤中的选择性剪接亚型。使用
最近开发的一系列无监督剪接检测和候选剪接调控预测
技术,我们发现剪接在成人和儿童癌症中广泛被破坏,独立于
明显的剪接因子突变。这些数据表明了一种潜在的范式转变模型,其中
癌症中存在广泛的协调剪接功能障碍,可能是通过剪接因子的不平衡造成的
表达、信号传导或基因改变。如果属实,剪接体定向和上游疗法可能是
广泛地在癌症中重新利用,重点关注特定的剪接特征和相关的监管
途径而不是仅针对特定突变。为了测试这些假设并开发可重复使用的分析
为了癌症界的资源,我们提出以下目标。
目标 1:通过观察到的致癌事件暗示关键剪接途径的脆弱性
多种癌症。我们将利用我们现有的综合多重技术在全球范围内描述选择性剪接的特征
涵盖数十种癌症和数千个样本的组学计算工作流程。识别剪接事件
使用新颖的无监督或监督分析也将在不同的癌症内部和之间进行比较
作为不同来源的正常细胞来定义可重复的肿瘤内在程序与分化相关程序。
目标 2:定义并验证儿科 AML 和多种疾病的核心剪接监管网络
人类癌症。我们将建立并验证一种新颖的学习模型来定义剪接调节网络
儿童 AML 并最终跨越多种成人和儿童癌症。我们将采用当前的最佳实践
用于多证据转录调控网络推断剪接并严格测试我们的模型
验证数据。一个大型实验剪接因子结合数据集库将用于改进我们的
预测。这些分析将鉴定新型剪接调节因子和 RNA 识别元件。
目标3:建立精准剪接生物标志物检测和选择性剪接的发现平台
目标抑制。我们将开发一个交互式计算界面来识别特定的 RNA 亚型
与目标 1 中获得的多种癌症中的不良预后剪接亚型相关。通过整合剪接,
同一患者的基因表达、蛋白质组学和甲基化数据,我们将能够发现
剪接事件与多种基因调控模式相关,可能在蛋白质水平上表现出来。
将建立相关的异构体相互作用和加权共表达网络,以优先考虑特定剪接
已知癌症途径中的事件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathan G. Salomonis其他文献
Nathan G. Salomonis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nathan G. Salomonis', 18)}}的其他基金
Unbiased identification of spliceosome vulnerabilities across cancer
公正地鉴定癌症中剪接体的脆弱性
- 批准号:
10194414 - 财政年份:2018
- 资助金额:
$ 44.01万 - 项目类别:
Unbiased identification of spliceosome vulnerabilities across cancer
公正地鉴定癌症中剪接体的脆弱性
- 批准号:
10418715 - 财政年份:2018
- 资助金额:
$ 44.01万 - 项目类别:
相似国自然基金
NMNAT1上调B7-H3介导急性早幼粒细胞白血病免疫逃逸的作用和机制研究
- 批准号:82300169
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PML-RARα远程调控组织因子的表达在急性早幼粒细胞白血病发生致死性出血的机制探究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
STING介导IFN信号通路参与TBLR1-RARα急性早幼粒细胞白血病发生发展及耐药的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
干扰素诱导基因IFIT1/IFIT3在氯碘羟喹诱导急性粒细胞白血病细胞焦亡中的作用和机制
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
复方黄黛片通过激活TNF-α/RIPK1/MLKL通路促进急性早幼粒细胞白血病坏死性凋亡的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Targeting Menin in Acute Leukemia with Upregulated HOX Genes
通过上调 HOX 基因靶向急性白血病中的 Menin
- 批准号:
10655162 - 财政年份:2023
- 资助金额:
$ 44.01万 - 项目类别:
Preclinical Validation of Personalized Molecular Assays for Measurable Residual Disease Monitoring in Pediatric AML
用于儿科 AML 可测量残留疾病监测的个性化分子检测的临床前验证
- 批准号:
10643568 - 财政年份:2023
- 资助金额:
$ 44.01万 - 项目类别:
Fast-kinetics approaches to define direct gene-regulatory functions of MYB in leukemia
快速动力学方法定义 MYB 在白血病中的直接基因调控功能
- 批准号:
10644259 - 财政年份:2023
- 资助金额:
$ 44.01万 - 项目类别:
The roles of AP-1 pathway activation in NK cell development and exhaustion programming in AML
AP-1 通路激活在 NK 细胞发育和 AML 衰竭编程中的作用
- 批准号:
10751755 - 财政年份:2023
- 资助金额:
$ 44.01万 - 项目类别:
Exploiting the Metabolic Dependencies of Pediatric AML
利用儿科 AML 的代谢依赖性
- 批准号:
10664637 - 财政年份:2023
- 资助金额:
$ 44.01万 - 项目类别: