CRCNS: Molecular and Computational Dissection of Cold Nociception
CRCNS:冷伤害感受的分子和计算剖析
基本信息
- 批准号:9977816
- 负责人:
- 金额:$ 33.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-15 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:Acute PainAddressAfferent NeuronsAutomobile DrivingBehaviorBehavioralBehavioral AssayBiological ModelsBiophysicsCategoriesCodeComplexComputer ModelsCoupledDetectionDissectionDrosophila genusElectrophysiology (science)Estrogen receptor positiveFibromyalgiaFunctional ImagingGoalsHealthHomeostasisHypersensitivityImageInstructionInvestigationIon ChannelIonsKnowledgeLeadLightLinkMechanicsMediatingModalityMolecularMolecular ComputationsMultiple SclerosisNeurologicNeuronsNociceptionNociceptive StimulusOrganismOutcomes ResearchOutputPainPain MeasurementPatternPerceptionPhysiologicalPlayPrincipal InvestigatorProcessPropertyProteinsRoleRouteSensorySignal TransductionStimulusStrokeSystemTRP channelTemperatureTemperature SenseTestingTissuesbasebehavioral responsecellular imagingchemotherapy induced neuropathychronic painexperiencein vivoinsightmodels and simulationmultimodalitynervous system disorderneural patterningneurogeneticsneurogenomicspain sensationpainful neuropathyreceptorrelating to nervous systemresponsesensory stimulussomatosensoryspatiotemporalstroke patienttool
项目摘要
The long-term goal of this proposal is to understand the molecular and physiological bases of cold
nociception. Thermosensory nociception is a specialized form of somatosensation essential to the survival
of all metazoans. Thermosensory nociception alerts the organism to potential environmental dangers
coupled with pain sensation thereby serving as a protective mechanism for driving adaptive behavioral
responses to safeguard against incipient damage. Despite this importance, the fundamental molecular and
biophysical bases of cold nociception remain poorly understood. Molecularly, transient receptor potential
channels (i.e. thermoTRPs) play critical roles in thermosensation, however, relatively less is known
regarding how thermoTRPs mechanistically function in regulating noxious cold detection. Neurologically,
acute and chronic pain may manifest as altered thermosensory nociception whereby innocuous thermal
stimuli erroneously engage nociceptive circuitry leading to neuropathic pain. Cold hypersensitivity is
associated with multiple sclerosis, fibromyalgia, stroke, and chemotherapy-induced neuropathy resulting in
neuropathic pain, however the mechanisms underlying cold sensitization are largely unknown. Here, we
will investigate a fundamental problem of how multimodal sensory neurons discriminately detect noxious
cold stimuli to elicit nocict9ptive behavior using Drosophila as a model system in combination with bi-
directionally linked neurogenetic, neurogenomic, cellular imaging, electrophysiological, behavioral,
computational modeling, and bifurcation analyses. We aim to uncover molecular and biophysical bases for
cold-evoked nociceptive stimulus coding, including the functional properties of thermoTRPs and Ca2·
signaling dynamics in this process. The project aims and outcomes of this research will significantly
advance our knowledge of cold nociception by addressing three open questions: (1) What are the
molecular and biophysical bases of cold nociceptive stimulus coding? (2) How do multimodal nociceptive
neurons discriminately detect noxious stimuli (e.g. cold) to drive nocifensive behavior? (3) How do
thermoTRPs and Ca2· signaling mechanisms mechanistically function in regulating noxious cold detection?
More generally, the bi-directional integration of experimental and computational approaches in a closed-
loop investigational strategy is well-suited to transform our understanding of cold nociception by elucidating
potentially generalizable mechanisms of cold thermosensory coding, including roles of TRP channels and.
Ca2· homeostasis in sensory-evoked neural activity.
RELEVANCE (See instructions):
The perception of noxious stimuli is often coupled to pain sensation as a protective mechanism, however
altered temperature sensation may lead to neuropathic pain (e.g. in multiple sclerosis, fibromyalgia, and
stroke) where patients experience pain due to cold hypersensitivity. By uncovering basic mechanisms of
noxious cold perception, we develop important insights on neural integration of painful stimuli providing
potential routes for understanding and treating neurological disease when this process is disrupted.
该提议的长期目标是了解冷的分子和物理基础
伤害感受。热感觉伤害感受是一种适合生存必不可少的体感应形式
在所有后生人中。热感觉伤害吸引力提醒有机体对潜在的环境危险
再加上疼痛感,从而作为驱动适应性行为的保护机制
对保护初期损害的响应。尽管如此,但基本分子和
冷鼻孔的生物物理基础仍然了解不足。分子的瞬时受体电势
但是,通道(即ThermotRP)在热效中起关键作用,但是,相对较少的
关于ThermoTRP如何在控制有害冷检测中机械起作用。神经学上,
急性和慢性疼痛可能表现为改变的热感性伤害感受,从而无效
刺激错误地接合伤害性电路,导致神经性疼痛。冷高敏性是
与多发性硬化症,纤维肌痛,中风和化学疗法诱导的神经病相关,导致
神经性疼痛,然而,冷敏感的基本机制在很大程度上尚不清楚。在这里,我们
将研究一个基本问题,即多模式感觉神经元如何歧视有害
冷刺激以使用果蝇作为模型系统与Bi-的结合引起nocict9的行为
定向连接的神经遗传学,神经基础,细胞成像,电生理,行为,行为,
计算建模和分叉分析。我们旨在发现分子和生物物理碱
冷诱发的伤害性刺激编码,包括ThermoTRP和CA2·的功能特性
在此过程中的信号动力学。该项目的目标和结果将大大显着
通过解决三个开放问题:(1)什么是什么?
冷伤害性刺激编码的分子和生物物理碱基? (2)多模式伤害感受
神经元区分检测有害刺激(例如冷)以驱动单位行为? (3)如何
ThermotRP和CA2·信号传导机制在确定有害冷检测方面机械起作用?
更一般地,在封闭式中实验和计算方法的双向整合
循环研究策略非常适合通过阐明我们对寒冷伤害感受的理解
冷热感应编码的潜在可推广机制,包括TRP通道和。
Ca2·感官诱发的神经活动中的稳态。
相关性(请参阅说明):
有害刺激的感知通常与疼痛感耦合为一种保护机制,但是
温度感觉改变可能导致神经性疼痛(例如,在多发性硬化症中,纤维肌痛和
中风)患者由于低温而导致疼痛。通过发现的基本机制
有害的感冒感,我们就痛苦的神经元整合提供了重要的见解
当此过程中断时,理解和治疗神经系统疾病的潜在途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GENNADY S CYMBALYUK其他文献
GENNADY S CYMBALYUK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GENNADY S CYMBALYUK', 18)}}的其他基金
CRCNS: Molecular and Computational Dissection of Cold Nociception
CRCNS:冷伤害感受的分子和计算剖析
- 批准号:
10434687 - 财政年份:2019
- 资助金额:
$ 33.98万 - 项目类别:
CRCNS: Molecular and Computational Dissection of Cold Nociception
CRCNS:冷伤害感受的分子和计算剖析
- 批准号:
10631093 - 财政年份:2019
- 资助金额:
$ 33.98万 - 项目类别:
CRCNS: Molecular and Computational Dissection of Cold Nociception
CRCNS:冷伤害感受的分子和计算剖析
- 批准号:
9914459 - 财政年份:2019
- 资助金额:
$ 33.98万 - 项目类别:
CRCNS: Molecular and Computational Dissection of Cold Nociception
CRCNS:冷伤害感受的分子和计算剖析
- 批准号:
10175071 - 财政年份:2019
- 资助金额:
$ 33.98万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Regulation of Schwann Cell Mitochondria Homeostasis in Painful Peripheral Neuropathy
疼痛性周围神经病中雪旺细胞线粒体稳态的调节
- 批准号:
10790951 - 财政年份:2023
- 资助金额:
$ 33.98万 - 项目类别:
MECHANISMS OF VISCERAL PAIN DRIVEN BY SMALL INTESTINAL MICROBIOTA
小肠微生物驱动内脏疼痛的机制
- 批准号:
10836298 - 财政年份:2023
- 资助金额:
$ 33.98万 - 项目类别:
Resolvin receptor signaling in trigeminal sensory neurons
三叉神经感觉神经元中的 Resolvin 受体信号传导
- 批准号:
10738862 - 财政年份:2023
- 资助金额:
$ 33.98万 - 项目类别:
Role of Primary Sensory Neuron CaMKII Signaling in Regulation of Pain
初级感觉神经元 CaMKII 信号传导在疼痛调节中的作用
- 批准号:
10656886 - 财政年份:2023
- 资助金额:
$ 33.98万 - 项目类别: