Exploring the Roles of Manganese in Neurons
探索锰在神经元中的作用
基本信息
- 批准号:9976232
- 负责人:
- 金额:$ 42.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAnimal ModelAnimalsBiologicalBloodBrainBrain regionCadmiumCell Culture TechniquesCell NucleusCell SurvivalCellsCerebellumChildDataDevelopmentDietary ManganeseDietary SupplementationDiseaseEnzymesEpidemiologyEtiologyExhibitsExploratory/Developmental GrantExposure toFamilyGenerationsGenetic TranscriptionGoalsGrowth and Development functionHealthHistologicHistologyHomeostasisHumanHuman bodyImpaired cognitionImpairmentInductively Coupled Plasma Mass SpectrometryIntellectual functioning disabilityIonsIronKnock-outKnowledgeLeadLinkManganeseManganese PoisoningMeasurementMeasuresMetalsMinorMitochondriaModelingMolecularMotorMusMutationNeurodevelopmental DisorderNeuronsNutrientOrganParkinsonian DisordersPathologicPathway interactionsPatientsPlayReactive Oxygen SpeciesRegulationReportingResearchRoleSeleniumSurveysTestingTherapeuticTissuesZincbehavioral impairmentcell typecerebral atrophycognitive developmentin vivomanganese deficiencymembermotor disordermouse modelneurodevelopmentneuron lossnovel strategiesradiotracersolutetranscriptometranscriptome sequencinguptake
项目摘要
ABSTRACT
Manganese (Mn) is an essential yet underappreciated nutrient required for proper growth and
development. Mn is necessary for mitochondrial generation of reactive oxygen species, which is important for
cell survival. Although Mn plays a broad role in the human body, the brain appears to be the most sensitive organ
to Mn dysregulation. Recent epidemiological surveys have found that both low and high Mn levels are associated
with cognitive and behavioral impairment in children. Moreover, exposure to high levels of Mn can lead to brain
Mn accumulation and a parkinsonian-like disorder. Thus, the correlation between Mn dysregulation and brain
malfunction in humans is well established. However, the causal relationship between the two remains to be
determined. Do abnormal Mn levels result in impaired cognitive development? Why is brain development so
sensitive to dysregulation of Mn? The lack of experimental approaches that can manipulate Mn levels in only the
brain has been the major roadblock to addressing these important questions.
The overarching goal of my research group is to contribute to the understanding of how Mn regulation
underlies normal and pathological brain development and functions. My research group and others recently
discovered a role for solute carrier family 39, member 8 (SLC39A8) in Mn homeostasis that is linked to
neurodevelopment. SLC39A8 is a transmembrane metal-ion transporter that is known to transport various metals
such as zinc, iron, cadmium, selenium, and Mn. In 2015, mutations in SLC39A8 were reported in
neurodevelopmental disorders (NDDs) characterized by intellectual disabilities and brain atrophy. Notably,
patients with SLC39A8 mutations exhibited severely low levels of Mn in the blood, but other metal levels in these
patients were normal. My research group demonstrated that the disease-associated mutations abrogated Mn
uptake activity and impaired mitochondrial functions. In these studies, the major perturbations in Mn levels
contrast strikingly with minor alterations in other metal levels, confirming that SLC39A8 is essential for Mn
homeostasis and that Mn is a main substrate that requires SLC39A8 in vivo. At present, how SLC39A8 deficiency
contributes NDDs remains unknown.
The objective of this project is to establish a mouse model that we can use to explore the roles of Mn in
neurons. We have generated Slc39a8 neuron-specific-knockout (Slc39a8-NSKO) mice, in which Slc39a8 is
deleted specifically in neurons. We will test whether Slc39a8-NSKO mice are an animal model of neuronal Mn
deficiency. The proposed project is exploratory because control of Mn levels specifically within neurons lacks
precedent; therefore, the project fits well with the R21 mechanism. Completion of these aims will likely provide
the first mouse model to explore the roles of Mn in neurons. As such, this research will open an avenue to the
study of Mn homeostasis in the brain and a better understanding of the etiology underlying Mn-related NDDs,
which could lead to novel approaches for developing therapeutic strategies.
抽象的
锰(MN)是适当生长和
发展。 Mn对于线粒体生成活性氧必不可少,这对于
细胞存活。尽管MN在人体中起着广泛的作用,但大脑似乎是最敏感的器官
Mn失调。最近的流行病学调查发现,低和高Mn水平均与
儿童的认知和行为障碍。此外,暴露于高水平的MN会导致大脑
MN积累和帕金森氏症疾病。因此,MN失调与大脑之间的相关性
人类的故障已经确定。但是,两者之间的因果关系仍然是
决定。异常的MN水平会导致认知发展受损吗?为什么大脑发育如此
对MN的失调敏感?缺乏仅在仅在
大脑一直是解决这些重要问题的主要障碍。
我的研究小组的总体目标是为理解MN调节做出贡献
基础正常和病理大脑发育和功能。我的研究小组和其他人最近
在MN稳态中发现了Solute Carrier家族39,成员8(SLC39A8)的角色,该角色与与
神经发育。 SLC39A8是一种跨膜金属离子转运蛋白,已知可以运输各种金属
例如锌,铁,镉,硒和MN。 2015年,据报道SLC39A8中的突变
具有智力残疾和脑萎缩为特征的神经发育障碍(NDDS)。尤其,
SLC39A8突变的患者在血液中表现出严重低水平的MN,但其他金属水平
患者正常。我的研究小组表明,与疾病相关的突变废除了MN
吸收活性和线粒体功能受损。在这些研究中,MN水平的主要扰动
与其他金属水平的微小变化形成鲜明对比,证实SLC39A8对于MN至关重要
稳态和MN是主要底物,需要在体内Slc39a8。目前,SLC39A8缺乏症如何
贡献NDD仍然未知。
该项目的目的是建立一个鼠标模型,我们可以用来探索MN在
神经元。我们已经产生了SLC39A8神经元特异性敲除(SLC39A8-NSKO),其中SLC39A8为
专门在神经元中删除。我们将测试SLC39A8-NSKO小鼠是否是神经元MN的动物模型
不足。拟议的项目是探索性的,因为对神经元内的MN水平的控制缺乏
先例;因此,该项目与R21机制非常吻合。这些目标的完成可能会提供
第一个探索MN在神经元中角色的小鼠模型。因此,这项研究将为
MN在大脑中的稳态研究以及对MN相关NDD的病因的更好理解,
这可能导致开发治疗策略的新方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Young Ah Seo其他文献
Young Ah Seo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Young Ah Seo', 18)}}的其他基金
Influence of Genetic Variation on Manganese Neurotoxicity and Parkinson's disease
遗传变异对锰神经毒性和帕金森病的影响
- 批准号:
9262452 - 财政年份:2016
- 资助金额:
$ 42.9万 - 项目类别:
Influence of genetic variation on manganese neurotoxicity and Parkinson's disease
遗传变异对锰神经毒性和帕金森病的影响
- 批准号:
8752660 - 财政年份:2014
- 资助金额:
$ 42.9万 - 项目类别:
相似国自然基金
肾—骨应答调控骨骼VDR/RXR对糖尿病肾病动物模型FGF23分泌的影响及中药的干预作用
- 批准号:82074395
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
基于细胞自噬调控的苦参碱对多囊肾小鼠动物模型肾囊肿形成的影响和机制研究
- 批准号:
- 批准年份:2019
- 资助金额:33 万元
- 项目类别:地区科学基金项目
NRSF表达水平对抑郁模型小鼠行为的影响及其分子机制研究
- 批准号:81801333
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
靶向诱导merlin/p53协同性亚细胞穿梭对听神经瘤在体生长的影响
- 批准号:81800898
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
伪狂犬病病毒激活三叉神经节细胞对其NF-кB和PI3K/Akt信号转导通路影响的分子机制研究
- 批准号:31860716
- 批准年份:2018
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 42.9万 - 项目类别:
Anti-flavivirus B cell response analysis to aid vaccine design
抗黄病毒 B 细胞反应分析有助于疫苗设计
- 批准号:
10636329 - 财政年份:2023
- 资助金额:
$ 42.9万 - 项目类别:
The Role of Glycosyl Ceramides in Heart Failure and Recovery
糖基神经酰胺在心力衰竭和恢复中的作用
- 批准号:
10644874 - 财政年份:2023
- 资助金额:
$ 42.9万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 42.9万 - 项目类别:
Defining the Role of Enteric Nervous System Dysfunction in Gastrointestinal Motor and Sensory Abnormalities in Down Syndrome
确定肠神经系统功能障碍在唐氏综合症胃肠运动和感觉异常中的作用
- 批准号:
10655819 - 财政年份:2023
- 资助金额:
$ 42.9万 - 项目类别: