Leveraging interactive SMS messaging to monitor and support maternal mental health in Kenya
利用交互式短信监测和支持肯尼亚孕产妇心理健康
基本信息
- 批准号:9976950
- 负责人:
- 金额:$ 12.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAutomationAwardCaringCharacteristicsChildbirthClientClinicClinic VisitsClinical DataClinical TrialsClinical Trials DesignCommunicationComplicationComputer ModelsComputer softwareContraceptive UsageDataData AnalyticsData SetDevelopmentDiagnosticEmotionalEnrollmentEpidemiologistEquationEvaluationExclusive BreastfeedingFrequenciesGoalsHealth CommunicationHealth PersonnelHealth StatusHealth Status IndicatorsHealthcareHumanHybrid ComputersIndividualInfantInternationalInterventionK-18 conjugateKenyaLanguageMachine LearningMaternal and Child HealthMental DepressionMental HealthMentorsMethodsMinorModelingMonitorNatural Language ProcessingParentsParticipantPatientsPerinatalPersonsPilot ProjectsPostpartum PeriodPregnancyPregnancy ComplicationsPsyche structurePublic HealthRandomized Controlled TrialsResearchResearch PersonnelResearch TrainingResourcesSpecificitySupervisionSystemTestingTextText MessagingTimeTrainingUniversitiesVariantWashingtonWomanadaptive interventionadverse outcomebasecareerdepressive symptomsdesigndigitalexperiencehigh riskimplementation trialimprovedmHealthmachine learning methodmeetingsmultidisciplinaryopen sourceperipartum depressionpredictive modelingpreservationresponseservice interventionskillssocial mediasymposiumtherapy designtool
项目摘要
ABSTRACT
Perinatal depression, defined as a depressive episode during pregnancy or in the first year postpartum, is the
most common complication of childbirth, affecting up to 20% of peripartum women globally. An enormous gap
exists in supporting women experiencing perinatal depression. Mobile health (mHealth) interventions such as
interactive SMS text messaging with healthcare workers (HCWs) have been proposed as resource-efficient,
accessible adjuncts to in-person care. Realizing the full public health potential of mHealth for mental health will
require strategic use of automation and empiric definition of interventions that dynamically adapt to user needs.
This K18 mentored career enhancement award aims to support Dr. Keshet Ronen, an epidemiologist with
multidisciplinary training, to become an expert in analysis of mHealth communication and development of
adaptive mHealth interventions. Building on Dr. Ronen’s established expertise in development and evaluation of
mHealth interventions using SMS and social media, and supported by a team of experienced mentors, the
following research and training aims are proposed.
Training plan: Through didactic coursework, individual mentor meetings, seminars, and conferences, Dr. Ronen
seeks to accomplish the following Career Enhancement Goals. (1) Gain proficiency and experience using natural
language processing and machine learning methods to analyze mHealth communication. (2) Gain proficiency
and experience in design of an adaptive mHealth intervention. (3) Deepen understanding of mHealth intervention
design for mental health. (4) Enhance skills in international study implementation and clinical trial design.
The proposed training plan will augment Dr. Ronen’s prior training and experience and allow her to complete the
proposed Research plan: Mobile WACh is a unique interactive SMS messaging platform that has been shown
to improve maternal-child health and whose impact on perinatal depression is currently being evaluated in a
randomized controlled trial in Kenya, Mobile WACh Neo. We propose to leverage a dataset of >100,000 SMS
messages with >3000 peripartum women in previous and ongoing Mobile WACh studies to (1) develop a
predictive model that can detect client SMS indicating elevated depression symptoms, and (2) identify HCW
message characteristics associated with improvements in depression symptoms. (3) Models from Aims 1-2 will
be implemented in the Mobile WACh software to develop an adaptive version of Mobile WACh Neo that flags
concerning messages and guides HCWs on SMS composition. A pilot study of Adaptive Mobile WACh Neo will
be conducted, nested within the Mobile WACh Neo randomized controlled trial in Kenya (R01HD098105), to
evaluate its acceptability and preliminary impact on time taken for HCWs to respond to client messages.
Collectively, these activities will enable Dr. Ronen to become a leader in the study of adaptive mHealth
interventions to support maternal mental health in resource-limited settings.
抽象的
围产期抑郁症,定义为怀孕期间或产后第一年的抑郁发作,是
分娩的最常见并发症,全球多达20%的围产社妇女影响。巨大的差距
存在于支持经历围产期抑郁症的妇女。移动健康(MHealth)干预措施,例如
与医疗保健工人(HCW)的交互式SMS文本消息已被提议为资源有效,
可访问的面对面护理的辅助手段。意识到MHealth在心理健康方面的全部公共卫生潜力将
需要对动态适应用户需求的干预措施的自动化和经验定义进行战略使用。
这项K18指导职业增强奖旨在支持Keshet Ronen博士
多学科培训,成为分析MHealth沟通和发展的实验
自适应MHealth干预措施。基于Ronen博士在开发和评估方面既定的专业知识
使用SMS和社交媒体进行的MHealth干预措施,并在经验丰富的导师团队的支持下,
提出了以下研究和培训目标。
培训计划:通过教学课程,个人会议,半手和会议,Ronen博士
试图实现以下职业增强目标。 (1)利用自然的熟练和经验
语言处理和机器学习方法分析MHealth通信。 (2)提高能力
和设计自适应MHealth干预的经验。 (3)加深对MHealth干预的理解
心理健康设计。 (4)提高国际研究实施和临床试验设计的技能。
拟议的培训计划将增强罗恩博士的先前培训和经验,并允许她完成
拟议的研究计划:移动WACH是一个独特的交互式SMS消息平台,已显示
为了改善母子健康,并且目前正在评估其对围产期抑郁症的影响
肯尼亚的随机对照试验,移动WACH NEO。我们建议利用> 100,000 SMS的数据集
在以前和正在进行的移动WACH研究中,有> 3000名围产妇女的消息到(1)开发
可以检测客户SMS的预测模型,表明抑郁症状升高,并且(2)识别HCW
与抑郁症状改善有关的消息特征。 (3)AIMS 1-2的模型将
可以在移动WACH软件中实现,以开发自适应版本的移动WACH NEO
关于消息和指导SMS组成的HCW。自适应移动WACH NEO的试点研究将
在肯尼亚的移动WACH NEO随机对照试验中嵌套(R01HD098105)进行进行
评估其可接受性和对HCW响应客户消息所花费的时间的初步影响。
总的来说,这些活动将使Ronen博士成为适应性MHealth研究的领导者
在资源有限的环境中支持孕产妇心理健康的干预措施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Keshet Ronen其他文献
Keshet Ronen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Keshet Ronen', 18)}}的其他基金
CHV-NEO: Community-based digital communication to support neonatal health
CHV-NEO:基于社区的数字通信支持新生儿健康
- 批准号:
10563193 - 财政年份:2021
- 资助金额:
$ 12.81万 - 项目类别:
CHV-NEO: Community-based digital communication to support neonatal health
CHV-NEO:基于社区的数字通信支持新生儿健康
- 批准号:
10393486 - 财政年份:2021
- 资助金额:
$ 12.81万 - 项目类别:
Leveraging interactive SMS messaging to monitor and support maternal mental health in Kenya
利用交互式短信监测和支持肯尼亚孕产妇心理健康
- 批准号:
10176601 - 财政年份:2020
- 资助金额:
$ 12.81万 - 项目类别:
相似国自然基金
工业自动化与创新的产业外溢:理论与实证
- 批准号:72302245
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
开发2’-氟阿拉伯糖核酸的自动化Sanger测序新方法
- 批准号:22307058
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度学习的三维物体智能化抓取策略及机械手自动化结构设计研究
- 批准号:62302517
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
全自动化运行城市轨道交通乘务计划优化问题研究
- 批准号:72301192
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
当机器成为我们的领导:领导职能自动化的内涵、测量及其多层次后果研究
- 批准号:72371260
- 批准年份:2023
- 资助金额:40.00 万元
- 项目类别:面上项目
相似海外基金
Commercialization Readiness Pilot (CRP) program support for: Direct-from-specimen identification of pathogens common in endocarditis
商业化准备试点 (CRP) 计划支持: 直接从样本鉴定心内膜炎常见病原体
- 批准号:
10758417 - 财政年份:2023
- 资助金额:
$ 12.81万 - 项目类别:
CGMP Compliant Closed Cell Culture System for culturing iPSC derived lung epithelial cells to COVID19 Therapy
符合 CGMP 的封闭细胞培养系统,用于培养 iPSC 衍生的肺上皮细胞以进行 COVID19 治疗
- 批准号:
10343488 - 财政年份:2020
- 资助金额:
$ 12.81万 - 项目类别:
Information visualizations to facilitate clinician-patient communication in HIV care (Info Viz: HIV)
信息可视化促进艾滋病毒护理中临床医生与患者的沟通(信息可视化:艾滋病毒)
- 批准号:
10251362 - 财政年份:2020
- 资助金额:
$ 12.81万 - 项目类别:
Leveraging interactive SMS messaging to monitor and support maternal mental health in Kenya
利用交互式短信监测和支持肯尼亚孕产妇心理健康
- 批准号:
10176601 - 财政年份:2020
- 资助金额:
$ 12.81万 - 项目类别:
Information visualizations to facilitate clinician-patient communication in HIV care (Info Viz: HIV)
信息可视化促进艾滋病毒护理中临床医生与患者的沟通(信息可视化:艾滋病毒)
- 批准号:
10475136 - 财政年份:2020
- 资助金额:
$ 12.81万 - 项目类别: