Mechanisms of Dendritic Spine Elimination

树突棘消除机制

基本信息

  • 批准号:
    9930698
  • 负责人:
  • 金额:
    $ 4.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Abstract The growth and retraction of dendritic spines with synapse formation and elimination is thought to underlie experience-dependent changes in brain circuitry during development and in the adult brain, and also may play a role in neurodevelopmental disorders. While much focus has been given to spine growth and associated synapse formation as a key step in the development of brain circuits, the mechanisms of spine retraction and synapse disassembly are ill-defined. During late postnatal development, after initial connectivity has been established, dendritic spine densities decrease and half of all synapses are lost in some regions of the cortex. This period coincides with a period of intense learning, suggesting that spine and synapse elimination may have an integral role in learning and memory. Indeed, many neurological disorders that result in mental retardation have been associated with spine loss and spine morphology changes. The primary goal of the proposed studies is to determine the mechanisms that govern the retraction of dendritic spines and the disassembly of synapses during brain development, plasticity, and disease. We have recently shown that spine shrinkage is initiated by both input-specific and locally competitive activity patterns that lead to synaptic weakening and that spine retraction is tightly coupled to disassembly of the postsynaptic density. We currently have three aims. First, we will determine the molecular mechanisms that drive input-specific spine shrinkage and retraction and synaptic weakening. Second, we will define the cellular and molecular signaling mechanisms by which competition between neighboring synapses drives spine shrinkage and retraction, and what role these competitive mechanisms play during circuit plasticity in vivo. Finally, we will determine how synaptic interactions and molecular composition are regulated during input-specific and heterosynaptic spine shrinkage and retraction. To achieve these goals, we will use focal photolysis of caged glutamate to stimulate individual spines, combined with electrophysiology to measure spine synapse function, calcium and fluorescence lifetime imaging to measure real-time signaling in dendritic microdomains, and electron microscopy to monitor pre- and postsynaptic ultrastructural changes and molecular alterations during spine retraction. The combined use of advanced two-photon imaging techniques, electrophysiology, and electron microscopy at single synapses will provide an innovative and powerful way to identify the mechanisms that govern the retraction and disassembly of spine synapses. Results from our experiments will rigorously address the mechanisms of spine retraction and synapse disassembly, thereby filling major gaps in our current understanding of neural circuit refinement during development and experience-dependent plasticity. Ultimately, basic knowledge of the mechanisms of spine elimination has strong potential to facilitate the development of therapeutics for neurological diseases.
抽象的 人们认为,树突状刺的生长和缩回是突触形成和消除的 在开发过程中和成年人期间脑电路的经验依赖性变化是基础 大脑,也可能在神经发育障碍中发挥作用。虽然重点是 将脊柱生长和相关的突触形成作为开发的关键步骤 脑电路,脊柱缩回的机制和突触拆卸的机制是不明的。 在产后晚期发育期间,建立初始连通性后,树突状脊柱 在皮质的某些地区,所有突触的密度降低,一半的突触损失。这个时期 与一段时间的学习时期相吻合,表明脊柱和突触消除可能 在学习和记忆中起着不可或缺的作用。确实,许多导致的神经系统疾病 智力低下与脊柱丧失和脊柱形态变化有关。这 拟议研究的主要目标是确定控制缩回的机制 在大脑发育,可塑性和 疾病。我们最近表明,脊柱收缩均由输入特异性和 局部竞争性活动模式导致突触弱,脊柱缩回是 紧密耦合到突触后密度的拆卸。我们目前有三个目标。第一的, 我们将确定驱动输入特异性脊柱收缩和的分子机制 缩回和突触减弱。其次,我们将定义细胞和分子信号传导 相邻突触之间竞争的机制驱动脊柱收缩和 缩回以及这些竞争机制在体内电路可塑性期间起什么作用。 最后,我们将确定如何调节突触相互作用和分子组成 在输入特异性和异质性脊柱收缩和缩回期间。为了实现这些目标, 我们将使用笼谷氨酸的局灶性光解来刺激单个棘突,并结合 测量脊柱突触功能,钙和荧光寿命成像的电生理学 测量树枝状微区和电子显微镜中的实时信号传导以监测 脊柱回缩期间的突触前和突触后超微结构变化和分子改变。 高级两光子成像技术,电生理学和电子的联合使用 单个突触时的显微镜将提供一种创新且有力的方式来识别 控制脊柱突触的缩回和拆卸的机制。我们的结果 实验将严格解决脊柱缩回和突触的机制 拆卸,从而填补了我们当前对神经回路完善的理解中的主要空白 在开发和经验依赖性可塑性期间。最终,对 消除脊柱的机制具有促进发展的强大潜力 神经疾病的治疗剂。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Heterosynaptic structural plasticity on local dendritic segments of hippocampal CA1 neurons.
  • DOI:
    10.1016/j.celrep.2014.12.016
  • 发表时间:
    2015-01-13
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Oh WC;Parajuli LK;Zito K
  • 通讯作者:
    Zito K
Loss of PSD-95 enrichment is not a prerequisite for spine retraction.
Ion flux-independent NMDA receptor signaling.
  • DOI:
    10.1016/j.neuropharm.2022.109019
  • 发表时间:
    2022-06-01
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Park, Deborah K.;Stein, Ivar S.;Zito, Karen
  • 通讯作者:
    Zito, Karen
Dendritic Spine Elimination: Molecular Mechanisms and Implications.
Breaking it down: the ubiquitin proteasome system in neuronal morphogenesis.
  • DOI:
    10.1155/2013/196848
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Hamilton AM;Zito K
  • 通讯作者:
    Zito K
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Karen Zito其他文献

Karen Zito的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Karen Zito', 18)}}的其他基金

Mechanisms of Dendritic Spine Elimination
树突棘消除机制
  • 批准号:
    7728918
  • 财政年份:
    2009
  • 资助金额:
    $ 4.33万
  • 项目类别:
Mechanisms of Dendritic Spine Elimination
树突棘消除机制
  • 批准号:
    9029771
  • 财政年份:
    2009
  • 资助金额:
    $ 4.33万
  • 项目类别:
Mechanisms of Dendritic Spine Elimination
树突棘消除机制
  • 批准号:
    9511913
  • 财政年份:
    2009
  • 资助金额:
    $ 4.33万
  • 项目类别:
Mechanisms of Dendritic Spine Elimination
树突棘消除机制
  • 批准号:
    8066300
  • 财政年份:
    2009
  • 资助金额:
    $ 4.33万
  • 项目类别:
Mechanisms of Dendritic Spine Elimination
树突棘消除机制
  • 批准号:
    8600357
  • 财政年份:
    2009
  • 资助金额:
    $ 4.33万
  • 项目类别:
Mechanisms of Dendritic Spine Elimination
树突棘消除机制
  • 批准号:
    8293482
  • 财政年份:
    2009
  • 资助金额:
    $ 4.33万
  • 项目类别:
Mechanisms of Dendritic Spine Elimination
树突棘消除机制
  • 批准号:
    8269089
  • 财政年份:
    2009
  • 资助金额:
    $ 4.33万
  • 项目类别:
Mechanisms of Dendritic Spine Elimination
树突棘消除机制
  • 批准号:
    8456903
  • 财政年份:
    2009
  • 资助金额:
    $ 4.33万
  • 项目类别:

相似国自然基金

成人型弥漫性胶质瘤患者语言功能可塑性研究
  • 批准号:
    82303926
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
  • 批准号:
    82302160
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
  • 批准号:
    82302025
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
  • 批准号:
    82302311
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Neurostimulation Enhanced Cognitive Restructuring for Transdiagnostic Emotional Dysregulation: A Component Analysis
神经刺激增强跨诊断情绪失调的认知重构:成分分析
  • 批准号:
    10583921
  • 财政年份:
    2023
  • 资助金额:
    $ 4.33万
  • 项目类别:
FastPlex: A Fast Deep Learning Segmentation Method for Accurate Choroid Plexus Morphometry
FastPlex:一种用于精确脉络丛形态测量的快速深度学习分割方法
  • 批准号:
    10734956
  • 财政年份:
    2023
  • 资助金额:
    $ 4.33万
  • 项目类别:
Epidemiology and Clinical Outcomes of Electroconvulsive Therapy Use in Nursing Home Residents with Dementia
痴呆症疗养院居民的流行病学和电休克治疗的临床结果
  • 批准号:
    10661910
  • 财政年份:
    2023
  • 资助金额:
    $ 4.33万
  • 项目类别:
Adolescent trauma produces enduring disruptions in sleep architecture that lead to increased risk for adult mental illness
青少年创伤会对睡眠结构产生持久的破坏,从而导致成人精神疾病的风险增加
  • 批准号:
    10730872
  • 财政年份:
    2023
  • 资助金额:
    $ 4.33万
  • 项目类别:
Biological Risk Factors for the Prospective Development of Alcohol Use Disorders in Young Adults with Bipolar Disorder and Typically Developing Young Adults
患有躁郁症的年轻人和典型发育的年轻人未来发生酒精使用障碍的生物危险因素
  • 批准号:
    10583360
  • 财政年份:
    2023
  • 资助金额:
    $ 4.33万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了