Heterogeneity of responses in vestibular primary afferents
前庭初级传入反应的异质性
基本信息
- 批准号:9933645
- 负责人:
- 金额:$ 15.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAction PotentialsAdultAfferent NeuronsAutomobile DrivingAxonBiophysicsBrainCellsCharacteristicsCodeCrista ampullarisCustomDataDendritesDevelopmentDimensionsElectric StimulationElectrophysiology (science)EpitheliumEquilibriumExhibitsFaceFiberFrequenciesFunctional disorderFutureGenerationsGeometryGlutamatesGoalsHairHair CellsHeterogeneityImplantIndividualIon ChannelKineticsLabelLaboratoriesLocationMechanicsMediatingModelingMotionNatureNerve FibersNeuroepithelialOrganPatientsPatternPeripheralPharmacologyPharmacotherapyPhasePhysiologic pulsePhysiologicalPopulationPotassium ChannelPreparationProcessPropertyProsthesisProtocols documentationRegulationRodentRoleSemicircular canal structureSensoryShapesSignal TransductionSliceStimulusSynapsesSystemTestingTetrodotoxinTissuesType I Hair CellType II Hair CellUtricle structureVariantVestibular Hair Cellsafferent nervecell typedensitydimorphismeffective therapyelectrical propertyequilibration disorderfunctional restorationimplant designindium arsenideinsightmathematical modelnovelnovel therapeuticsotoconiapatch clamppostnatal developmentreceptorregional differencerelating to nervous systemresponseribbon synapsetherapeutic targettooltransmission processvoltagevoltage clamp
项目摘要
Project Summary
Approximately 8 million adults in the US suffer from balance impairment due to damage to the peripheral
vestibular system, but effective treatments for balance dysfunction are lacking. Vestibular hair cells within
vestibular canal and otolith organs convert motion into receptor potentials and sensory information is relayed to
the brain by action potentials in vestibular afferent nerves. Afferents in central zones (CZ) of vestibular
neuroepithelia exhibit different responses to vestibular stimuli than afferents in peripheral zones (PZ). The
nature of the neural code conveying vestibular information in distinct afferent types is poorly understood. There
are 3 types of vestibular afferents: calyx-only afferents innervate one or more type I hair cells, bouton dendrites
innervate type II hair cells and dimorphic afferents contact both hair cell types. Our goal is to elucidate distinct
action potential firing mechanisms in afferents with calyx terminals to better understand vestibular coding.
Calyx-only afferents are present solely in CZ and have irregular firing patterns, whereas dimorphic afferents
exist in both CZ and PZ and have regular firing patterns. To achieve our goal we will refine novel preparations
of vestibular cristae and utricles, developed by our laboratory, as tools to study calyx-bearing afferents in CZ
and PZ of rodent neuroepithelia. We will employ electrophysiological, hair bundle stimulation, immuno-
histochemical and pharmacological approaches to characterize ion channels in CZ and PZ afferent fibers in
developing and mature epithelia. In Aim 1 we will determine the contributions of K+ channels to action potential
firing in CZ and PZ afferents. Aim 2 will test the hypotheses that tetrodotoxin (TTX)-sensitive Nav1.6 Na+
channels contribute uniquely to action potential firing in mature PZ dimorphs, and that TTX-insensitive Na+
channels are transiently expressed during development. In Aim 3 we will incorporate ion channel data from
Aims 1 and 2 into a novel, custom-written three dimensional mathematical model of the calyx to provide insight
into our zonally-driven experimental findings.To determine how channel localization directly impacts action
potential firing, identified channel types will be strategically placed on the inner and outer faces of the calyx
terminal and associated axon and channel density varied. Our results will clarify how sensory information is
conveyed and how zonal encoding is generated within segregated vestibular afferents. Our data will inform
development of vestibular neurotherapeutics targeting specific groups of ion channels in afferent nerves.
Existing vestibular prosthetic implants attempt to restore normal vestibular function by direct electrical
stimulation of vestibular afferents, but implants that restore function to both otolith and semicircular canal
afferent neurons do not yet exist. Our results will provide important new information on vestibular afferent
coding that could inform development of and drive new paradigms in vestibular implants.
项目概要
美国约有 800 万成年人因周围神经系统受损而患有平衡障碍
前庭系统,但缺乏平衡功能障碍的有效治疗方法。前庭毛细胞内
前庭管和耳石器官将运动转化为受体电位,并将感觉信息传递给
大脑通过前庭传入神经的动作电位。前庭中央区 (CZ) 的传入
神经上皮对前庭刺激的反应与外周区(PZ)传入细胞的反应不同。这
人们对以不同传入类型传递前庭信息的神经编码的性质知之甚少。那里
前庭传入神经有 3 种类型: 仅花萼传入神经支配一个或多个 I 型毛细胞、布顿树突
支配 II 型毛细胞,二态传入神经接触两种毛细胞类型。我们的目标是阐明不同的
带有萼末梢的传入神经的动作电位放电机制,以更好地理解前庭编码。
仅花萼传入神经仅存在于 CZ 中并且具有不规则的放电模式,而二形传入神经
存在于 CZ 和 PZ 中并且具有规则的发射模式。为了实现我们的目标,我们将完善新颖的制剂
由我们实验室开发的前庭嵴和椭圆囊,作为研究 CZ 中萼轴承传入的工具
和啮齿动物神经上皮的 PZ。我们将采用电生理学、发束刺激、免疫-
组织化学和药理学方法来表征 CZ 和 PZ 传入纤维中的离子通道
发育和成熟的上皮。在目标 1 中,我们将确定 K+ 通道对动作电位的贡献
CZ 和 PZ 传入神经放电。目标 2 将检验河豚毒素 (TTX) 敏感 Nav1.6 Na+ 的假设
通道对成熟 PZ 二晶型的动作电位放电有独特贡献,并且 TTX 不敏感的 Na+
通道在发育过程中短暂表达。在目标 3 中,我们将合并来自的离子通道数据
目标 1 和 2 成为一种新颖的、定制的花萼三维数学模型,以提供洞察力
进入我们的区域驱动的实验结果。确定渠道本地化如何直接影响行动
潜在的发射,确定的通道类型将战略性地放置在花萼的内表面和外表面上
末端和相关的轴突和通道密度各不相同。我们的结果将阐明感官信息是如何产生的
传递以及区域编码如何在分离的前庭传入神经中生成。我们的数据将告知
针对传入神经中特定离子通道组的前庭神经治疗药物的开发。
现有的前庭假体植入物试图通过直接电恢复正常的前庭功能
刺激前庭传入神经,但植入物可恢复耳石和半规管的功能
传入神经元还不存在。我们的结果将提供有关前庭传入的重要新信息
可以为前庭植入物的开发提供信息并推动新范例的编码。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katherine Janet Rennie其他文献
Katherine Janet Rennie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katherine Janet Rennie', 18)}}的其他基金
Ion Channels and Excitability in the Peripheral Vestibular System
周围前庭系统的离子通道和兴奋性
- 批准号:
10361492 - 财政年份:2021
- 资助金额:
$ 15.55万 - 项目类别:
Ion Channels and Excitability in the Peripheral Vestibular System
周围前庭系统的离子通道和兴奋性
- 批准号:
10599148 - 财政年份:2021
- 资助金额:
$ 15.55万 - 项目类别:
Ion Channels and Excitability in the Peripheral Vestibular System
周围前庭系统的离子通道和兴奋性
- 批准号:
10219544 - 财政年份:2021
- 资助金额:
$ 15.55万 - 项目类别:
PHARMACOLOGY OF THE TYPE I HAIR CELL/CALYX SYNAPSE
I 型毛细胞/花萼突触的药理学
- 批准号:
2471004 - 财政年份:1998
- 资助金额:
$ 15.55万 - 项目类别:
PHARMACOLOGY OF THE TYPE I HAIR CELL/CALYX SYNAPSE
I 型毛细胞/花萼突触的药理学
- 批准号:
6342336 - 财政年份:1998
- 资助金额:
$ 15.55万 - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
晚钠电流通过CaMK-II调节跨壁胞内钙离子分布在心肌缺血再灌注心律失常中的作用及机制研究
- 批准号:81900300
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
- 批准号:
10679796 - 财政年份:2023
- 资助金额:
$ 15.55万 - 项目类别:
Mechanical regulation of maturation and pathology of engineered human heart tissues
工程人体心脏组织成熟和病理的机械调节
- 批准号:
10604901 - 财政年份:2023
- 资助金额:
$ 15.55万 - 项目类别:
Improving Cochlear Implant Outcomes Through Modeling and Programming Strategies Based on Human Inner Ear Pathology
通过基于人类内耳病理学的建模和编程策略改善人工耳蜗的效果
- 批准号:
10825043 - 财政年份:2023
- 资助金额:
$ 15.55万 - 项目类别:
Function, composition, and mechanism of RNA splicing factories in cardiomyopathy
RNA剪接工厂在心肌病中的功能、组成和机制
- 批准号:
10583011 - 财政年份:2022
- 资助金额:
$ 15.55万 - 项目类别:
Engineered BacNav and BacCav for Improved Excitability and Contraction
专为改善兴奋性和收缩性而设计的 BacNav 和 BacCav
- 批准号:
10392121 - 财政年份:2022
- 资助金额:
$ 15.55万 - 项目类别: