Spinal circuitry for ventilatory control and compensation
用于通气控制和补偿的脊髓回路
基本信息
- 批准号:9922391
- 负责人:
- 金额:$ 34.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:ALS patientsAmyotrophic Lateral SclerosisAssesAtelectasisBehaviorBrain StemBreathingCause of DeathCervicalChestChronicCommunication impairmentDataDiseaseDisease ProgressionElectromyographyExerciseFailureFinancial compensationFoundationsFunctional disorderGlutamatesGoalsHealthImpairmentInjuryLateralLeadLifeLocationLumbar spinal cord structureMeasurementMechanical ventilationMedialMolecularMolecular ProfilingMotorMotor NeuronsMusMuscleMuscle functionNerve DegenerationNeuromuscular DiseasesNeuronsPatientsPatternPharmacologyPlayPreventionRabies virusRespiration DisordersRespiratory DiaphragmRespiratory FailureRespiratory MusclesRespiratory Tract InfectionsRestRoleSignal PathwaySleepSpinalSpinal CordSpinal cord injuryTestingTherapeuticTransgenic OrganismsViralWorkcostdesigner receptors exclusively activated by designer drugsexperimental studyhazardimprovedmad itch virusmolecular subtypesmotor neuron degenerationmouse modelneural circuitneuroregulationnovel strategiesprematurepreventrecruitrespiratorytherapy developmentventilation
项目摘要
Crone, S. A.
Project Summary
The proposed studies investigate the role of spinal V2a neurons in the control of auxiliary (non-
diaphragmatic) respiratory muscles (ARMs) for inspiration. These muscles are normally used to increase
ventilation during exercise, but they are also used to augment diaphragm function after injury or disease. Despite
the importance of ARMs for enhancing ventilation or compensating for loss of diaphragm function, little is
known about the neural circuits that drive their activity in either health or disease. ARM activity increases
ventilation in ALS model mice at early disease stages, but there is a central deficit that prevents activation of
ARMs for breathing at late disease stages, despite the fact that these muscles are active and functional for
voluntary behaviors. Either increasing (through Gq signaling pathways) or decreasing (through Gi signaling
pathways) the excitability of V2a neurons is able to increase ARM activity at rest in healthy and ALS model mice.
Thus, these neurons are a potential target to increase ARM activity and ventilation in patients with ALS, other
neuromuscular diseases, or spinal cord injury. However, the V2a class of neurons appears to be composed of
subtypes that play distinct roles in the control of breathing. In order to develop therapies to improve breathing
by altering the activity, preventing degeneration, or replacing degenerated V2a neurons, it is necessary to
determine the location and molecular subtypes of V2a neurons that impact ventilation and to understand their
specific roles. Aim 1 will use transgenic and viral strategies to increase excitability, decrease excitability, or ablate
V2a neurons in cervical, thoracic, or lumbar spinal cord to identify how respiratory muscle activity is regulated
by V2a neurons at different segmental levels. Aim 2 will investigate the molecular diversity of V2a neurons within
the cervical cord by investigating differences in connectivity and function within respiratory circuits of a medial
V2a subtype and a lateral V2a subtype. Aim 2 will also asses the effects on ventilation of altering excitability of
only V2a neurons with direct excitatory connections to respiratory motor neurons. Aim 3 will assess the long-
term impact that degeneration of V2a neurons has on breathing by prematurely ablating cervical V2a neurons in
a mouse model of ALS. The potential benefit (and hazards) of chronically increasing the excitability of V2a
neurons on ARM activity, motor neuron degeneration, and ventilatory health in ALS model mice will also be
assessed. By accomplishing these aims, we will pinpoint the location, molecular identity, and connectivity of
spinal V2a neurons that pattern respiratory muscle activity as well as assess the potential of pharmacologically
altering the excitability of V2a neurons to improve breathing in a mouse model of ALS.
Crone,S。A.
项目摘要
拟议的研究研究了脊柱V2A神经元在辅助控制中的作用(非 -
diaphragmatic)呼吸道肌肉(臂)以获得灵感。这些肌肉通常用于增加
运动过程中的通风,但它们也用于增强受伤或疾病后的隔膜功能。尽管
武器对增强通风或补偿diaphragm功能丧失的重要性,几乎没有
知道促进其在健康或疾病中活动的神经回路。手臂活动增加
在早期疾病阶段,ALS模型小鼠的通风,但中心赤字可防止激活
尽管这些肌肉活跃并且功能正常,但在晚期疾病阶段进行呼吸
自愿行为。增加(通过GQ信号通路)或减少(通过GI信号传导
途径)V2A神经元的兴奋性能够在健康和ALS模型小鼠中增加静止的手臂活动。
因此,这些神经元是增加ALS患者的手臂活性和通风的潜在靶标
神经肌肉疾病或脊髓损伤。但是,V2A类神经元似乎由
在呼吸控制中起着不同作用的亚型。为了开发疗法以改善呼吸
通过改变活动,预防变性或替换退化的V2A神经元,有必要
确定影响通气的V2A神经元的位置和分子亚型,并了解其
特定角色。 AIM 1将使用转基因和病毒策略来提高兴奋性,降低兴奋性或消融性
宫颈,胸腔或腰脊髓中的V2A神经元,以确定如何调节呼吸肌活动
通过V2A神经元在不同的节段水平上。 AIM 2将研究V2A神经元内的分子多样性
通过研究内侧呼吸回路内连通性和功能的差异,宫颈绳
V2A亚型和横向V2A亚型。 AIM 2还将评估对更改兴奋性通风的影响
只有与呼吸运动神经元直接兴奋性连接的V2A神经元。 AIM 3将评估长期
V2A神经元的变性对呼吸的术语影响通过过早消融宫颈V2A神经元中的呼吸
ALS的鼠标模型。长期增加V2A的兴奋性的潜在益处(和危害)
ALS模型小鼠的手臂活动,运动神经元变性和通气健康的神经元也将是
评估。通过实现这些目标,我们将确定位置,分子身份和连通性
脊柱V2A神经元,其对呼吸肌肉活性进行模式以及评估药理的潜力
改变V2A神经元的兴奋性以改善ALS小鼠模型中的呼吸。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEVEN ALLEN CRONE其他文献
STEVEN ALLEN CRONE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEVEN ALLEN CRONE', 18)}}的其他基金
Assessing the contribution of altered PI3K signaling to breathing abnormalities and sudden death in epilepsy
评估 PI3K 信号传导改变对癫痫呼吸异常和猝死的影响
- 批准号:
10569092 - 财政年份:2022
- 资助金额:
$ 34.78万 - 项目类别:
Assessing the contribution of altered PI3K signaling to breathing abnormalities and sudden death in epilepsy
评估 PI3K 信号传导改变对癫痫呼吸异常和猝死的影响
- 批准号:
10458153 - 财政年份:2022
- 资助金额:
$ 34.78万 - 项目类别:
Spinal circuitry for ventilatory control and compensation
用于通气控制和补偿的脊髓回路
- 批准号:
10597015 - 财政年份:2019
- 资助金额:
$ 34.78万 - 项目类别:
Spinal circuitry for ventilatory control and compensation
用于通气控制和补偿的脊髓回路
- 批准号:
10155606 - 财政年份:2019
- 资助金额:
$ 34.78万 - 项目类别:
Spinal circuitry for ventilatory control and compensation
用于通气控制和补偿的脊髓回路
- 批准号:
10397050 - 财政年份:2019
- 资助金额:
$ 34.78万 - 项目类别:
相似国自然基金
磷脂结合蛋白Annexin A11相变在肌萎缩性脊髓侧索硬化症中的作用及机制研究
- 批准号:82101509
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
磷脂结合蛋白Annexin A11相变在肌萎缩性脊髓侧索硬化症中的作用及机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
C9orf72 多聚重复蛋白对miRNA生成和功能影响及其在ALS/FTD发病机制中的作用研究
- 批准号:81701261
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
线粒体蛋白CHCHD10稳定突触的作用及机制研究
- 批准号:31701036
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
伴TBK1突变肌萎缩性脊髓侧索硬化症中RIPK1活化的意义及机制研究
- 批准号:31701207
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Ultrasound-coupled electrical impedance tomography for assessment of neuromuscular disorders
超声耦合电阻抗断层扫描用于评估神经肌肉疾病
- 批准号:
9908399 - 财政年份:2019
- 资助金额:
$ 34.78万 - 项目类别:
CTE and Posttraumatic Neurodegeneration: Neuropathology and Ex Vivo Imaging
CTE 和创伤后神经变性:神经病理学和离体成像
- 批准号:
8993651 - 财政年份:2014
- 资助金额:
$ 34.78万 - 项目类别:
On-the-Fly Field-potential Sensing Electrode Track based NSC sorting for brain re
基于动态场电位传感电极轨迹的 NSC 脑再分类
- 批准号:
8712598 - 财政年份:2014
- 资助金额:
$ 34.78万 - 项目类别:
Targeted gene transfer across specific synapse types
跨特定突触类型的靶向基因转移
- 批准号:
8673318 - 财政年份:2014
- 资助金额:
$ 34.78万 - 项目类别:
CTE and Posttraumatic Neurodegeneration: Neuropathology and Ex Vivo Imaging
CTE 和创伤后神经变性:神经病理学和离体成像
- 批准号:
9315530 - 财政年份:2014
- 资助金额:
$ 34.78万 - 项目类别: