SCH: INT Re-envisioned Chat-assessment for Real-time Investigating of Nursing and Guidance
SCH:INT 重新设想的用于护理和指导实时调查的聊天评估
基本信息
- 批准号:9926403
- 负责人:
- 金额:$ 24.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-13 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcademyAcuteAddressAdoptedAdoptionAlgorithmsAmericanAreaBig DataBig Data MethodsCare given by nursesCaringClinicalClinical PathwaysCoupledDataData ScienceDecision MakingDeveloped CountriesDevelopmentDimensionsDiscipline of NursingDocumentationElectronic Health RecordEquilibriumEventEvolutionFamily CaregiverFeedbackFeesGoalsGuidelinesHealthHealth PersonnelHealthcareHealthcare SystemsHospitalsInformaticsInfrastructureInstitute of Medicine (U.S.)InstitutionInternationalInvestigationKnowledgeLabelLeadLearningLimesMachine LearningMeasuresMedicalMedicineMethodsMiningMissionModelingNurse AdministratorNursesNurses Performance EvaluationsNursing InformaticsOutcomePatient-Focused OutcomesPatientsPatternPhysiciansProcessPublicationsQuality IndicatorRecoveryReportingResearchRiskSafetySchool NursingSeminalSourceStructureSystemTextTimeTrainingUncertaintyUnited States Centers for Medicare and Medicaid ServicesUnited States National Library of MedicineWeightWorkarmbaseclinical practicecomputer sciencedata miningdata modelingdesignflexibilitygraduate studenthealth care qualityimprovedindexingindividual patientindustry partnerinnovationlearning algorithmmassive open online coursesmultimodalitynursing care qualityopen sourcepatient populationpatient safetyphrasespredictive modelingsupervised learningtoolvector
项目摘要
Two decades have lapsed since the seminal publications of the National Academy of Medicine (formerly
the Institute of Medicine), To Err Is Human and Crossing the Quality Chasm, cast a national spotlight on
health-care safety and quality, yet US patient outcome indices continue to lag behind those in other
industrialized countries. The 2009 American Recovery and Reinvestment Act mandated health-care
providers adopt electronic health record (EHR) systems, leading to widespread EHR adoption, albeit
primarily for billing purposes rather than research or quality improvement efforts. Thus EHR impact on
health-care quality has tended to be in the domains of physician efficiency and guideline compliance.
Despite a large body of evidence that nursing quality is directly related to patient outcomes in the acute
care selling, nurses often lack timely information to use in improving individual patient outcomes, and
indices of outcomes across patient populations are slow to budge over lime. Widespread adoption of EHRs
in U.S. hospitals now allows determination of outcome quality indicators for all patients in a hospital for
real-time feedback to nurses. Quality indicators are often only determined by piecing together other
information to determine occurrence of an incident, e.g., exhuming information buried in nursing notes.
The goal is to develop Chart-assessment for Real-lime Investigation of Nursing and Guidance (CARING),
an automated machine learning system to report and predict nursing quality indicators in real-time for
hospitalized patients to assist nurses in care planning. CARI NG will reflect algorithmic innovations to mine
sequential patterns from multi-sourced, heterogeneous data including nursing narratives, yielding robust
predictive models that are insensitive to uncertain labels and evolve with changes in health-care practices.
CARING will represent EHR data using inter-connected tensors, capturing higher-order relations, temporal
weighting, i.e., more recent data receives more weight, and incorporating domain expert feedback in
development. Although CARING will be developed initially for the ten hospitals of our industry partner
Emory Healthcare, its flexible refinement will enable adaptation at other health-care institutions. Outcomes
of this project will give nurses actionable data in real time to improve nursing care quality that they do not
receive now. Moreover, this system can be implemented into the health information infrastructure at an
institutional level, integrating multi-scale and multi-level clinical, contextual, and organizational data
surrounding each patient for real-time reporting and incorporation into predictive models.
自美国国家医学科学院(前身为美国国家医学院)发表开创性出版物以来,二十年过去了。
医学研究所),《人都会犯错》和《跨越质量鸿沟》,引起全国关注
医疗保健安全和质量,但美国患者结果指数仍然落后于其他国家
工业化国家。 2009 年美国复苏和再投资法案强制推行医疗保健
医疗服务提供者采用电子健康记录 (EHR) 系统,导致电子健康记录 (EHR) 的广泛采用,尽管
主要用于计费目的,而不是研究或质量改进工作。因此 EHR 对
医疗保健质量往往涉及医生效率和指南遵守情况。
尽管大量证据表明护理质量与急性重症患者的预后直接相关
护理销售时,护士常常缺乏及时的信息来改善个体患者的治疗效果,以及
整个患者群体的结果指数变化缓慢。电子病历的广泛采用
美国医院现在允许确定医院所有患者的结果质量指标
实时反馈给护士。质量指标通常只能通过将其他指标拼凑在一起来确定
确定事件发生的信息,例如挖掘隐藏在护理记录中的信息。
目标是开发用于护理和指导实时调查(CARING)的图表评估,
自动化机器学习系统,用于实时报告和预测护理质量指标
住院患者协助护士制定护理计划。 CARI NG将算法创新体现到挖矿上
来自多源、异构数据(包括护理叙述)的连续模式,产生稳健的结果
对不确定标签不敏感并随着医疗保健实践的变化而发展的预测模型。
CARING 将使用互连张量来表示 EHR 数据,捕获高阶关系、时间关系
加权,即更新的数据获得更多的权重,并将领域专家的反馈纳入
发展。虽然CARING最初是为我们行业合作伙伴的十家医院开发的
埃默里医疗保健公司的灵活改进将使其他医疗保健机构能够适应。结果
该项目将为护士提供实时可操作的数据,以提高他们不具备的护理质量
现在收到。此外,该系统可以快速实施到卫生信息基础设施中。
机构层面,整合多尺度、多层次的临床、背景和组织数据
围绕每个患者进行实时报告并纳入预测模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VICKI Stover HERTZBERG其他文献
VICKI Stover HERTZBERG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VICKI Stover HERTZBERG', 18)}}的其他基金
Sensor Hardware and Intelligent Tools for Assessing the Health Effects of Heat Exposure
用于评估热暴露对健康影响的传感器硬件和智能工具
- 批准号:
10522560 - 财政年份:2022
- 资助金额:
$ 24.8万 - 项目类别:
Sensor Hardware and Intelligent Tools for Assessing the Health Effects of Heat Exposure
用于评估热暴露对健康影响的传感器硬件和智能工具
- 批准号:
10703469 - 财政年份:2022
- 资助金额:
$ 24.8万 - 项目类别:
Machine Learning for Atrial Fibrillation Ablation
心房颤动消融的机器学习
- 批准号:
10115455 - 财政年份:2021
- 资助金额:
$ 24.8万 - 项目类别:
SCH: INT Re-envisioned Chat-assessment for Real-time Investigating of Nursing and Guidance
SCH:INT 重新设想的用于护理和指导实时调查的聊天评估
- 批准号:
10221054 - 财政年份:2019
- 资助金额:
$ 24.8万 - 项目类别:
SCH: INT Re-envisioned Chat-assessment for Real-time Investigating of Nursing and Guidance
SCH:INT 重新设想的用于护理和指导实时调查的聊天评估
- 批准号:
10453755 - 财政年份:2019
- 资助金额:
$ 24.8万 - 项目类别:
SCH: INT Re-envisioned Chat-assessment for Real-time Investigating of Nursing and Guidance
SCH:INT 重新设想的用于护理和指导实时调查的聊天评估
- 批准号:
10018103 - 财政年份:2019
- 资助金额:
$ 24.8万 - 项目类别:
Data Science Core - Center for the Study of Symptom Science, Metabolomics and Multiple Chronic Conditions
数据科学核心 - 症状科学、代谢组学和多种慢性病研究中心
- 批准号:
10194618 - 财政年份:2018
- 资助金额:
$ 24.8万 - 项目类别:
Data Science Core - Center for the Study of Symptom Science, Metabolomics and Multiple Chronic Conditions
数据科学核心 - 症状科学、代谢组学和多种慢性病研究中心
- 批准号:
10456831 - 财政年份:2018
- 资助金额:
$ 24.8万 - 项目类别:
相似国自然基金
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
- 批准号:82300764
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
活性脂质Arlm-1介导的自噬流阻滞在儿童T细胞急性淋巴细胞白血病化疗耐药逆转中的作用机制研究
- 批准号:82300182
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
- 批准号:82370175
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
FORUM ON MEDICAL AND PUBLIC HEALTH PREPAREDNESS FOR DISASTERS AND EMERGENCIES AND ACTION COLLABORATIVE ON DISASTERS/PUBLIC HEALTH EMERGENCY RESEARCH
灾害和紧急情况医疗和公共卫生防备论坛以及灾害/公共卫生紧急情况研究行动合作
- 批准号:
10937101 - 财政年份:2023
- 资助金额:
$ 24.8万 - 项目类别:
Identifying the Causes of the Stagnation in National U.S. Cardiovascular Disease Mortality
查明美国全国心血管疾病死亡率停滞不前的原因
- 批准号:
10585800 - 财政年份:2023
- 资助金额:
$ 24.8万 - 项目类别:
Organizational resilience: A novel strategy for improving ICU outcomes
组织弹性:改善 ICU 治疗结果的新策略
- 批准号:
10586383 - 财政年份:2023
- 资助金额:
$ 24.8万 - 项目类别:
A Translational Research Approach to Healthy Technology Usage in Language-Minority Families with Young Children
有幼儿的语言少数群体家庭健康技术使用的转化研究方法
- 批准号:
10822222 - 财政年份:2023
- 资助金额:
$ 24.8万 - 项目类别: