Redox control over metabolism and mitochondrial bioenergetics directs the course of acute inflammation and sepsis.
氧化还原对代谢和线粒体生物能学的控制指导急性炎症和脓毒症的进程。
基本信息
- 批准号:9916767
- 负责人:
- 金额:$ 38.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAnabolismAntioxidantsBioenergeticsCell RespirationCessation of lifeCysteineDiseaseEnergy SupplyEquilibriumFailureFundingGoalsGrantHealthHealth Care CostsHomeostasisHumanImmuneImmune systemImmunityInfectionInflammationKnowledgeMetabolicMetabolismMitochondriaModelingMolecularNational Institute of Allergy and Infectious DiseaseNational Institute of General Medical SciencesNuclearOrganOrgan failureOxidation-ReductionPDPK1 genePhysiologyProteinsPublic HealthReactive Oxygen SpeciesRecoveryResearchResolutionRogaineSIRT1 geneSepsisSulfhydryl CompoundsTestingTranslational ResearchUnited States National Institutes of Healthbaseeconomic costglobal healthimprovedmonocytemortalitymouse modelpreventprogramsseptic patientssystemic inflammatory responsetargeted treatmenttheoriestherapeutic target
项目摘要
SUMMARY
The principal goal of this MIRA proposal from a distinguished PI with many years of uninterrupted NIH R01
funding and productive research in acute inflammation is to address the major gap and unmet need of
understanding how humans survive sepsis, the highly lethal acute systemic inflammatory response driven by
infection. Most sepsis deaths occur during organ and immune failure from dysregulated inflammation. No
molecular-based specific therapies are available for this health dilemma. This proposal will develop a new
and unifying theory of sepsis, according to which a persistent low-energy catabolic state, systemic
inflammation inertia (SII), impedes oxidative metabolism and prevents failing immunity and organs
from regaining the anabolic energy state needed to restore homeostasis. Mechanistically, this proposal's
working model posits that a switch from a pro-oxidant anabolic state to a persistent antioxidant catabolic state
underlies SII. It further theorizes that a functional cysteine thiol-based redox “switchboard” located on key
protein homeostats controls the equilibrium between anabolism and during sepsis, and that its rewiring causes
bioenergetics failure and promotes high mortality sepsis. However, the theory predicts that SII is reversible and
therapeutically targeting key homeostats can restore metabolic balance and enable immune system and organ
recovery and improve sepsis survival. Consistent with the reversibility concept, independently targeted nuclear
NAD+ dependent SIRT1 and mitochondrial PDK1 promote redox and bioenergy equilibrium and increase
survival in a mouse model of sepsis-dependent SII, and proof of principle occurs in human sepsis blood
monocytes. The PI's funded NIGMS and NIAID R01 grants consolidated in this MIRA provided early support
for the energy “supply-and-demand discrepancy” theory of how sepsis so often kills. Consolidating the PI's
research program will maximize understanding and targeted treatment of a major public health dilemma, about
which we are still insufficiently informed and which continues to be a major killer.
概括
该MIRA提案与杰出PI的主要目标是多年不间断的NIH R01
急性炎症的资金和生产性研究是解决主要差距和未满足的需求
了解人类如何生存败血症,这是由高度致命的急性全身性炎症反应。
感染。大多数败血症死亡发生在器官期间,并因注射失调而免疫失败。不
基于分子的特异性疗法可用于这种健康困境。该建议将开发一个新的
并统一的败血症理论,根据该理论,持续的低能分解代谢状态,系统性
炎症惯性(SII),阻碍氧化代谢并防止免疫力失败和器官
从恢复恢复稳态所需的合成能量状态。从机械上讲,该提议的内容
工作模型认为,从促氧化剂合成代谢状态转换为持续的抗氧化分解代谢状态
基础Sii。进一步的理论是,钥匙上的功能性半胱氨酸基于甲醇的氧化还原“总机”
蛋白质稳态控制合成代谢和败血症期间的等效物
生物能力衰竭并促进高死亡率败血症。但是,关于SII是可逆的理论预测,
热靶向关键稳态可以恢复代谢平衡并实现免疫系统和器官
恢复并改善败血症生存。与可逆性概念一致,独立针对核
NAD+依赖性SIRT1和线粒体PDK1促进氧化还原和生物能平衡并增加
在败血症依赖性SII的小鼠模型中生存,原理证明发生在人类败血症中
单核细胞。 PI的资助的Nigms和Niaid R01在此MIRA中合并提供了早期的支持
对于败血症如何经常杀死的能量“供需差异”理论。合并PI
研究计划将最大程度地理解和针对性的公共卫生困境,以了解
我们仍然没有足够的了解,并且仍然是主要杀手。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Emory McCall其他文献
Charles Emory McCall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Emory McCall', 18)}}的其他基金
Redox control over metabolism and mitochondrial bioenergetics directs the course of acute inflammation and sepsis.
氧化还原对代谢和线粒体生物能学的控制指导急性炎症和脓毒症的进程。
- 批准号:
10398109 - 财政年份:2018
- 资助金额:
$ 38.75万 - 项目类别:
Redox control over metabolism and mitochondrial bioenergetics directs the course of acute inflammation and sepsis
氧化还原对代谢和线粒体生物能学的控制指导急性炎症和脓毒症的进程
- 批准号:
10001885 - 财政年份:2018
- 资助金额:
$ 38.75万 - 项目类别:
Mitochondrial Biogenesis is Regulated by RelB During Inflammation
炎症过程中线粒体生物合成受 RelB 调节
- 批准号:
8696501 - 财政年份:2014
- 资助金额:
$ 38.75万 - 项目类别:
Mitochondrial Biogenesis is Regulated by RelB During Inflammation
炎症过程中线粒体生物合成受 RelB 调节
- 批准号:
9265879 - 财政年份:2014
- 资助金额:
$ 38.75万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Ceramides as Novel Mediators of Tubular Metabolic Dysfunction Driving Kidney Injury
神经酰胺作为肾小管代谢功能障碍驱动肾损伤的新型调节剂
- 批准号:
10677394 - 财政年份:2023
- 资助金额:
$ 38.75万 - 项目类别:
The role and regulation of mitochondrial localization in mature neurons.
成熟神经元线粒体定位的作用和调节。
- 批准号:
10634116 - 财政年份:2023
- 资助金额:
$ 38.75万 - 项目类别:
Functional analysis of KCNK12 in dopaminergic neuroprotection
KCNK12在多巴胺能神经保护中的功能分析
- 批准号:
10665836 - 财政年份:2023
- 资助金额:
$ 38.75万 - 项目类别:
Interrogation of the oxidative-stress-induced leukemia program in vivo using metabolic imaging
使用代谢成像研究体内氧化应激诱导的白血病程序
- 批准号:
10729140 - 财政年份:2023
- 资助金额:
$ 38.75万 - 项目类别: