Neural signatures of learning complex environments in the amygdala-prefrontal network
杏仁核前额叶网络中学习复杂环境的神经特征
基本信息
- 批准号:9915876
- 负责人:
- 金额:$ 6.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2020-09-30
- 项目状态:已结题
- 来源:
- 关键词:Amygdaloid structureAnimalsArchitectureAttenuatedBehaviorBehavioralBehavioral MechanismsBehavioral ModelCodeCognitiveComplexComputer ModelsDecision MakingDropsEducational process of instructingElectrophysiology (science)EnvironmentEquilibriumEventFeedbackFoundationsFunctional disorderGoalsHumanInstitutesIntakeLearningLesionLightLocationMacaca mulattaMapsMemoryMindModelingMonkeysNeuronsOutcomePerformancePlayPopulationProcessPropertyPsychological reinforcementResearchRewardsRoleRouteSensoryShapesSignal TransductionStimulusSynapsesTechniquesTemporal LobeTestingTimeTo specifyTrainingUndifferentiatedUniversitiesUpdateVisuospatialWeightbrain behaviorcognitive functiondeep neural networkhigh dimensionalityimprovedlearning algorithmneural circuitneural modelneuroimagingneuromechanismneurotransmissionnonhuman primatenovelrelating to nervous systemresponsestatisticstheories
项目摘要
The ability to learn and think about complex situations is central to a range of human cognitive
functions, including navigation, reasoning, and decision making. Numerous theories across these
domains rely on representations of states of these external and internal environments, but how
they acquire such representations remains unknown. My overall goal is to understand how
animals, including humans, can reason and learn in such complex environments. In this project,
we propose to investigate how animals are able to learn these representations in a complex
sequential decision making task in monkeys. Using a novel behavioral task inspired by the board
game battleship, monkeys search for hidden shapes on a screen. There are millions of possible
shapes, and yet monkeys are capable learners, vastly outperforming classic reinforcement
learning algorithms. How monkeys can learn the shapes so quickly remains mysterious. In
addition to these unknown computational foundations for learning, the neural mechanisms that
support this behavior are also unexplored. Recent studies including electrophysiology and lesion
research have found signatures of state representations in the amygdala (AMYG) and the
orbitofrontal cortex (OFC). However, these studies have only used very few states that only
require associations to learn. Moreover, the interactions and computational roles of the regions
have not been characterized. In light of these gaps in our understanding of learning in complex
tasks, we will use the battleship task to elucidate 1) the aspects of the environment that drive
learning representations of complex states, 2) the computational foundations of this learning
using behavioral model fitting and deep neural networks, and 3) the neural mechanisms that
underwrite this capacity in the AMYG-OFC circuit. We hypothesize that OFC represents hidden
task states, those that cannot be fully defined in terms of perceptible stimuli and outcomes. We
further hypothesize that AMYG plays a central role in learning and updating these representations
by constructing an online representation of the current environment using input from OFC as well
as from sensory processing and memory regions, representing current stimuli, outcomes, and
associations. We posit an observer-critic architecture underlies learning representations of
complex tasks, with AMYG activity computing and sending a teaching signal to OFC that learns
and updates task state representations. As part of this planned research, I will be trained in
advanced modeling and neural analysis techniques, and complete a course of study on the use of
deep neural networks. This training will take place under the guidance of Dr. Stefano Fusi and Dr.
C Daniel Salzman in the Zuckerman Mind Brain Behavior Institute at Columbia University.
学习和思考复杂情况的能力是一系列人类认知的核心
功能,包括导航,推理和决策。这些理论遍布这些理论
域依赖于这些外部和内部环境的状态的表示,但是如何
他们获得此类代表仍然未知。我的总体目标是了解如何
包括人在内的动物可以在如此复杂的环境中推理和学习。在这个项目中,
我们建议调查动物如何在复杂中学习这些表示
猴子中的顺序决策任务。使用董事会启发的新颖行为任务
游戏战舰,猴子在屏幕上搜索隐藏的形状。有数百万可能
形状,但猴子却具有能力的学习者,大大优于经典增强
学习算法。猴子如何如此迅速地学习形状仍然是神秘的。在
除了这些未知的学习计算基础,以及神经机制
支持此行为也未开发。最近的研究包括电生理学和病变
研究发现,杏仁核(Amyg)和
眶额皮质(OFC)。但是,这些研究只使用了极少数的状态
需要协会学习。此外,区域的相互作用和计算角色
尚未表征。鉴于我们对复杂学习的理解
任务,我们将使用战舰任务阐明1)驱动环境的各个方面
复杂状态的学习表示,2)该学习的计算基础
使用行为模型拟合和深神经网络,以及3)神经机制
在Amyg-Of-Ofc电路中承销此容量。我们假设OFC表示隐藏
任务状态,那些不能完全根据可感知的刺激和结果来完全定义的。我们
进一步假设Amyg在学习和更新这些表示方面起着核心作用
通过使用OFC的输入来构建当前环境的在线表示
从感觉处理和记忆区域,表示当前刺激,结果和
协会。我们认为观察者批评的架构是
复杂的任务,通过AMYG活动计算并向OFC发送教学信号
并更新任务状态表示。作为这项计划研究的一部分,我将接受培训
高级建模和神经分析技术,并完成有关使用的研究课程
深神经网络。这项培训将在Stefano Fusi博士和博士的指导下进行。
C Daniel Salzman在哥伦比亚大学的Zuckerman Mind Brain行为研究所。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Barack其他文献
David Barack的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Barack', 18)}}的其他基金
Neural signatures of learning complex environments in the amygdala-prefrontal network
杏仁核前额叶网络中学习复杂环境的神经特征
- 批准号:
10249424 - 财政年份:2019
- 资助金额:
$ 6.73万 - 项目类别:
Neural signatures of learning complex environments in the amygdala-prefrontal network
杏仁核前额叶网络中学习复杂环境的神经特征
- 批准号:
10395717 - 财政年份:2019
- 资助金额:
$ 6.73万 - 项目类别:
Neural signatures of learning complex environments in the amygdala-prefrontal network
杏仁核前额叶网络中学习复杂环境的神经特征
- 批准号:
9754494 - 财政年份:2019
- 资助金额:
$ 6.73万 - 项目类别:
相似国自然基金
南海浮游动物摄食和病毒裂解对原绿球藻和聚球藻的死亡率及其碳循环效应
- 批准号:42306134
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
青海湖流域入湖河流大型底栖动物多样性与地质多样性关系研究
- 批准号:32371744
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
城市河流底栖动物性状β多样性的空间格局及群落构建研究
- 批准号:32301334
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于供应链视角的动物源性食品中抗微生物药物耐药性传导机制及监管策略研究
- 批准号:72303209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于高通量测序和培养组学的伴侣动物-人抗生素抗性基因分布特征及传播研究
- 批准号:82373646
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 6.73万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 6.73万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 6.73万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 6.73万 - 项目类别:
Discovery Early Career Researcher Award
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 6.73万 - 项目类别:
Continuing Grant