Neural signatures of learning complex environments in the amygdala-prefrontal network
杏仁核前额叶网络中学习复杂环境的神经特征
基本信息
- 批准号:9915876
- 负责人:
- 金额:$ 6.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2020-09-30
- 项目状态:已结题
- 来源:
- 关键词:Amygdaloid structureAnimalsArchitectureAttenuatedBehaviorBehavioralBehavioral MechanismsBehavioral ModelCodeCognitiveComplexComputer ModelsDecision MakingDropsEducational process of instructingElectrophysiology (science)EnvironmentEquilibriumEventFeedbackFoundationsFunctional disorderGoalsHumanInstitutesIntakeLearningLesionLightLocationMacaca mulattaMapsMemoryMindModelingMonkeysNeuronsOutcomePerformancePlayPopulationProcessPropertyPsychological reinforcementResearchRewardsRoleRouteSensoryShapesSignal TransductionStimulusSynapsesTechniquesTemporal LobeTestingTimeTo specifyTrainingUndifferentiatedUniversitiesUpdateVisuospatialWeightbrain behaviorcognitive functiondeep neural networkhigh dimensionalityimprovedlearning algorithmneural circuitneural modelneuroimagingneuromechanismneurotransmissionnonhuman primatenovelrelating to nervous systemresponsestatisticstheories
项目摘要
The ability to learn and think about complex situations is central to a range of human cognitive
functions, including navigation, reasoning, and decision making. Numerous theories across these
domains rely on representations of states of these external and internal environments, but how
they acquire such representations remains unknown. My overall goal is to understand how
animals, including humans, can reason and learn in such complex environments. In this project,
we propose to investigate how animals are able to learn these representations in a complex
sequential decision making task in monkeys. Using a novel behavioral task inspired by the board
game battleship, monkeys search for hidden shapes on a screen. There are millions of possible
shapes, and yet monkeys are capable learners, vastly outperforming classic reinforcement
learning algorithms. How monkeys can learn the shapes so quickly remains mysterious. In
addition to these unknown computational foundations for learning, the neural mechanisms that
support this behavior are also unexplored. Recent studies including electrophysiology and lesion
research have found signatures of state representations in the amygdala (AMYG) and the
orbitofrontal cortex (OFC). However, these studies have only used very few states that only
require associations to learn. Moreover, the interactions and computational roles of the regions
have not been characterized. In light of these gaps in our understanding of learning in complex
tasks, we will use the battleship task to elucidate 1) the aspects of the environment that drive
learning representations of complex states, 2) the computational foundations of this learning
using behavioral model fitting and deep neural networks, and 3) the neural mechanisms that
underwrite this capacity in the AMYG-OFC circuit. We hypothesize that OFC represents hidden
task states, those that cannot be fully defined in terms of perceptible stimuli and outcomes. We
further hypothesize that AMYG plays a central role in learning and updating these representations
by constructing an online representation of the current environment using input from OFC as well
as from sensory processing and memory regions, representing current stimuli, outcomes, and
associations. We posit an observer-critic architecture underlies learning representations of
complex tasks, with AMYG activity computing and sending a teaching signal to OFC that learns
and updates task state representations. As part of this planned research, I will be trained in
advanced modeling and neural analysis techniques, and complete a course of study on the use of
deep neural networks. This training will take place under the guidance of Dr. Stefano Fusi and Dr.
C Daniel Salzman in the Zuckerman Mind Brain Behavior Institute at Columbia University.
学习和思考复杂情况的能力是一系列人类认知的核心
功能,包括导航、推理和决策。围绕这些问题有许多理论
域依赖于这些外部和内部环境的状态表示,但是如何
他们获得这样的表征仍然未知。我的总体目标是了解如何
包括人类在内的动物可以在如此复杂的环境中进行推理和学习。在这个项目中,
我们建议研究动物如何能够在复杂的环境中学习这些表征
猴子的顺序决策任务。使用受董事会启发的新颖行为任务
游戏战舰,猴子在屏幕上寻找隐藏的形状。有数以百万计的可能
形状,但猴子是有能力的学习者,远远优于经典的强化
学习算法。猴子如何能够如此迅速地学习形状仍然是个谜。在
除了这些未知的学习计算基础之外,神经机制
支持这种行为也尚未探索。最近的研究包括电生理学和病变
研究发现杏仁核(AMYG)和大脑中的国家代表特征
眶额皮质(OFC)。然而,这些研究仅使用了极少数状态,仅
需要协会来学习。此外,区域的相互作用和计算作用
尚未被表征。鉴于我们对复杂学习的理解存在这些差距
任务中,我们将使用战舰任务来阐明 1) 驱动环境的各个方面
学习复杂状态的表示,2)这种学习的计算基础
使用行为模型拟合和深度神经网络,以及 3)神经机制
在 AMYG-OFC 电路中承保此容量。我们假设 OFC 代表隐藏
任务状态,那些无法根据可感知的刺激和结果来完全定义的任务状态。我们
进一步假设 AMYG 在学习和更新这些表示方面发挥着核心作用
通过使用 OFC 的输入构建当前环境的在线表示
来自感觉处理和记忆区域,代表当前的刺激、结果和
协会。我们假设观察者批评家架构是学习表示的基础
复杂的任务,通过 AMYG 活动计算并向 OFC 发送学习信号
并更新任务状态表示。作为这项计划研究的一部分,我将接受以下方面的培训:
先进的建模和神经分析技术,并完成使用的学习课程
深度神经网络。本次培训将在 Stefano Fusi 博士和 Dr. Stefano Fusi 的指导下进行。
哥伦比亚大学祖克曼心脑行为研究所的 C Daniel Salzman。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Barack其他文献
David Barack的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Barack', 18)}}的其他基金
Neural signatures of learning complex environments in the amygdala-prefrontal network
杏仁核前额叶网络中学习复杂环境的神经特征
- 批准号:
10249424 - 财政年份:2019
- 资助金额:
$ 6.73万 - 项目类别:
Neural signatures of learning complex environments in the amygdala-prefrontal network
杏仁核前额叶网络中学习复杂环境的神经特征
- 批准号:
10395717 - 财政年份:2019
- 资助金额:
$ 6.73万 - 项目类别:
Neural signatures of learning complex environments in the amygdala-prefrontal network
杏仁核前额叶网络中学习复杂环境的神经特征
- 批准号:
9754494 - 财政年份:2019
- 资助金额:
$ 6.73万 - 项目类别:
相似国自然基金
乳酸介导的组蛋白乳酸化调控哺乳动物主要合子基因组激活的机制研究
- 批准号:82301880
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
早期环境暴露对儿童哮喘免疫保护的动物实验和机制研究
- 批准号:82300031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于供应链视角的动物源性食品中抗微生物药物耐药性传导机制及监管策略研究
- 批准号:72303209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带森林土壤氮添加下微节肢动物对氮转化过程的调控
- 批准号:32360323
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
Slc39a13在哺乳动物铁代谢中的作用
- 批准号:32371226
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Characterizing the connectivity and molecular composition of opioid-sensitive neurons in the periaqueductal gray
导水管周围灰质阿片敏感神经元的连接和分子组成特征
- 批准号:
10605415 - 财政年份:2023
- 资助金额:
$ 6.73万 - 项目类别:
Genetic and Transcriptomic Mechanisms of Progressive Ethanol Consumption in the Diversity Outbred Mouse
多样性远交小鼠渐进性乙醇消耗的遗传和转录组机制
- 批准号:
10751184 - 财政年份:2023
- 资助金额:
$ 6.73万 - 项目类别:
Stem cell-derived exosomes to ameliorate chemobrain
干细胞衍生的外泌体改善化学脑
- 批准号:
10584374 - 财政年份:2023
- 资助金额:
$ 6.73万 - 项目类别:
Social Information Processing in the Vomeronasal System during Active Behavior
主动行为期间犁鼻系统的社会信息处理
- 批准号:
10751849 - 财政年份:2023
- 资助金额:
$ 6.73万 - 项目类别:
A Dendritic Substrate for Fast-Acting Antidepressant Action
具有快速抗抑郁作用的树突状基质
- 批准号:
10623145 - 财政年份:2022
- 资助金额:
$ 6.73万 - 项目类别: