A Wireless Multi-function Microscope for Lifetime Imaging of the Brain Tumor Vasculome
用于脑肿瘤血管终身成像的无线多功能显微镜
基本信息
- 批准号:9914541
- 负责人:
- 金额:$ 45.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-12 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAlzheimer&aposs DiseaseAnesthesia proceduresAnestheticsAngiogenesis InhibitorsAnimalsArteriesBiological MarkersBlood VesselsBrain NeoplasmsCD47 geneCellsCerebrovascular CirculationClinicalCustomDataDevelopmentDevicesDiseaseDrug Delivery SystemsDyesElectroencephalographyExhibitsFluorescenceGene ExpressionGlioblastomaGliomaGoalsHistologicHistologyHourImageImaging DeviceImmune EvasionImmune responseImmunocompetentImmunosuppressionImmunotherapyKnock-outLasersLife Cycle StagesLightingMagnetic Resonance ImagingMalignant neoplasm of brainMapsMeasurementMediatingMicroscopeMissionModelingMorphologyMotivationMusNeuraxisOpticsPathway interactionsPatientsPerfusionPhenotypePhysiologicalPlayPublic HealthQuailResearchResistanceResolutionRoleSignal TransductionStrokeStructureSystemTimeTreatment EfficacyTumor-associated macrophagesTumor-infiltrating immune cellsUnited States National Institutes of HealthValidationVascular remodelingVeinsWireless TechnologyXenograft procedureangiogenesisanticancer researchawakebehavioral studyblood vessel developmentbrain tumor imagingcancer imagingcellular engineeringcerebral blood volumecerebral microvasculatureclinically relevantdesignfluorescence imagingfluorophoreimaging modalityimaging systemimmunoregulationin vivoin vivo imaginginsightminiaturizeneoplastic cellneuroimagingnovel therapeuticsoperationoptical imagingoptogeneticsoverexpressionpre-clinicalreal-time imagesrecruitsensortherapy resistanttransmission processtreatment responsetreatment strategytumortumor growthtumor microenvironmenttumor progressiontumor-immune system interactionswireless fidelity
项目摘要
ABSTRACTPreclinical and clinical evidence has shown that brain tumors can alter the structure and function of the
central nervous system microvasculature (i.e. CNS vasculome) during progression, therapy and the emergence of
therapeutic resistance. Brain tumor progression related vasculome remodeling occurs via angiogenesis (i.e. new blood
vessel formation). In contrast, non-angiogenic pathways such as ‘co-option’ (i.e. tumor cells hijacking extant blood
vessels) and ‘immunomodulation’ (i.e. vascular changes induced by the infiltration of immune cells) are involved in
antiangiogenic resistance and immunotherapy evasion, respectively. To elucidate the role of these angiogenic and non-
angiogenic pathways on brain tumor progression and therapeutic response necessitates the development of imaging
tools that can characterize early to advanced in vivo changes in the CNS vasculome (i.e. over the lifetime of the disease).
Therefore, our goal is to build a wireless ‘plug-n-play’ multichannel microscope capable of imaging structural/functional
microvascular (~7-10 µm) changes in vivo, over the entire lifetime of a brain tumor. We propose to exploit advances in
miniaturized optics, image sensor design and wireless technology to fabricate a miniature, wireless microscope with
three channels: fluorescence (FL) to image fluorescent brain tumor cells or dyes; intrinsic optical signals (IOS) to image
cerebral blood volume (CBV) and intravascular oxygenation (HbSat); and laser speckle contrast (LSC) to image cerebral
blood flow (CBF). Guided by compelling preliminary data, we will pursue the following Specific Aims: (1) Develop a
tether-free multichannel microscope with on-chip compressed sensing and wireless transmission; (2) Characterize the in
vivo vasculome in angiogenic and co-optive patient-derived (PDX) brain tumor models over their lifetime; and
(3) Characterize in vivo changes in the vasculome induced by the immune microenvironment of brain tumors. Under
Aim1 we will fabricate a specialized image sensor with compressed sensing for ultra-low power wireless operation. After
validation against an equivalent benchtop imaging system, we will image the CNS vasculome in healthy mice without the
confounding effects of anesthetics. This will include identifying microvessel type (i.e. artery vs. vein) with FL, quantifying
vascular morphology and HbSat with IOS, perfusion with LSC, and mapping ‘microvascular connectivity’ by correlating
CBV (or CBF) fluctuations in microvessels. Under Aim2 we will characterize differences in the CNS vasculomes of clinically
relevant angiogenic and co-optive patient-derived xenografts, and assess if the former exhibits larger disruptions in
microvascular connectivity due to vascular remodeling. Under Aim3, we will characterize in vivo differences in the CNS
vasculomes of wild-type and non-immunosuppressed xenografts, to determine if alleviating immunosuppression
increases CBV/CBF/HbSat and promotes recruitment of tumor associated macrophages (TAM). We will create a versatile
3D printed plug-n-play wireless microscope that permits neuroimaging in freely behaving animals at any time, for any
duration, during any task or physiological recording (e.g. EEG). As this microscope can be customized to any fluorophore,
modified for optogenetics or drug delivery, and used for behavioral studies, we believe it will usher in a new era of brain
cancer research, with utility in diseases involving the CNS vasculome (e.g. stroke, Alzheimer’s disease).
摘要预临时和临床证据表明,脑肿瘤可以改变
中枢神经系统微举行(即CNS Vasculome)在进展,治疗和出现
治疗性抗性。脑肿瘤进展相关的血管组重塑是通过血管生成发生的(即新血液
船舶形成)。相反,非血管生成途径,例如“选择”(即劫持额外血液的肿瘤细胞
血管)和“免疫调节”(即免疫细胞浸润引起的血管变化)参与
抗血管生成抗性和免疫疗法逃避。阐明这些血管生成和非 -
脑肿瘤进展和热反应的血管生成途径必需成像的发展
可以表征CNS Vasculome(即在疾病的一生中)中早期到高级体内变化的工具。
因此,我们的目标是构建能够成像结构/功能的无线“插件”多通道显微镜
在整个脑肿瘤的整个生命周期中,微血管(〜7-10 µm)变化。我们建议利用
微型光学元件,图像传感器设计和无线技术,以制造微型无线显微镜
三个通道:荧光(FL)以形象荧光脑肿瘤细胞或染料;固有的光信号(iOS)
脑血容量(CBV)和血管内充氧(HBSAT);和激光斑点对比度(LSC)以图像大脑
血流(CBF)。通过引人注目的初步数据指导,我们将追求以下特定目的:(1)开发一个
带有片上压缩的灵敏度和无线传输的无系带多通道显微镜; (2)表征
血管生成和同事的患者衍生(PDX)脑肿瘤模型中的体内血管群;和
(3)表征由脑肿瘤的免疫微环境诱导的体内变化。在下面
AIM1我们将使用压缩传感器制造专用图像传感器,以实现超低功率无线操作。后
针对等效的台式成像系统的验证,我们将在没有该小鼠的健康小鼠中对CNS Vasculome进行成像
麻醉药的混杂作用。这将包括识别使用FL的微血管类型(即动脉与静脉),量化
血管形态和HBSAT与iOS,LSC的灌注以及通过关联来映射“微血管连接”
微血管中的CBV(或CBF)波动。在AIM2下,我们将表征临床上CNS血管的差异
相关的血管生成和协调性患者衍生的Xenographictics,并评估前者是否表现出更大的中断
由于血管重塑而导致的微血管连通性。在AIM3下,我们将表征CNS的体内差异
野生型和非免疫抑制的Xenographtics的脉管体,以确定是否减轻免疫抑制
增加CBV/CBF/HBSAT并促进肿瘤相关巨噬细胞的募集(TAM)。我们将创建一个通用的
3D打印的插头-N-Play无线显微镜,可以随时自由地表现出自由表现的动物。
持续时间,在任何任务或物理记录期间(例如脑电图)。由于可以将此显微镜定制为任何荧光团,所以
修改用于光遗传学或药物输送,用于行为研究,我们认为它将引入大脑的新时代
癌症研究,具有涉及中枢神经系统血管群的疾病效用(例如中风,阿尔茨海默氏病)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arvind P Pathak其他文献
Arvind P Pathak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arvind P Pathak', 18)}}的其他基金
Image-based Systems Biology of Vascular Co-option in Brain Tumors
脑肿瘤血管选择的基于图像的系统生物学
- 批准号:
10681077 - 财政年份:2023
- 资助金额:
$ 45.4万 - 项目类别:
A Wireless Multi-function Microscope for Lifetime Imaging of the Brain Tumor Vasculome
用于脑肿瘤血管终身成像的无线多功能显微镜
- 批准号:
10539279 - 财政年份:2019
- 资助金额:
$ 45.4万 - 项目类别:
A Wireless Multi-function Microscope for Lifetime Imaging of the Brain Tumor Vasculome
用于脑肿瘤血管终身成像的无线多功能显微镜
- 批准号:
10321899 - 财政年份:2019
- 资助金额:
$ 45.4万 - 项目类别:
Multiscale Image-based Modeling of Antiangiogenic Resistance in Breast Cancer
基于图像的乳腺癌抗血管生成耐药性的多尺度建模
- 批准号:
8941820 - 财政年份:2015
- 资助金额:
$ 45.4万 - 项目类别:
A Wireless Laser Speckle and Fluorescence Imager for In vivo Brain Tumor Imaging
用于体内脑肿瘤成像的无线激光散斑和荧光成像仪
- 批准号:
8491065 - 财政年份:2013
- 资助金额:
$ 45.4万 - 项目类别:
A Wireless Laser Speckle and Fluorescence Imager for In vivo Brain Tumor Imaging
用于体内脑肿瘤成像的无线激光散斑和荧光成像仪
- 批准号:
8735101 - 财政年份:2013
- 资助金额:
$ 45.4万 - 项目类别:
A LECTIN-CONTRAST AGENT FOR MULTIMODALITY MOLECULAR IMAGING OF TUMOR ANGIOGENESIS
用于肿瘤血管生成多模式分子成像的凝集素造影剂
- 批准号:
7597120 - 财政年份:2008
- 资助金额:
$ 45.4万 - 项目类别:
A LECTIN-CONTRAST AGENT FOR MULTIMODALITY MOLECULAR IMAGING OF TUMOR ANGIOGENESIS
用于肿瘤血管生成多模式分子成像的凝集素造影剂
- 批准号:
7470274 - 财政年份:2008
- 资助金额:
$ 45.4万 - 项目类别:
相似海外基金
Ex Vivo Imaging of the Aging Brain to Discover Morphology/Pathology Associations
衰老大脑的离体成像以发现形态学/病理学关联
- 批准号:
10608603 - 财政年份:2023
- 资助金额:
$ 45.4万 - 项目类别:
A Bioengineered Model for Deciphering Lymphatic Dysfunction in Inflammation
破译炎症中淋巴功能障碍的生物工程模型
- 批准号:
10493273 - 财政年份:2021
- 资助金额:
$ 45.4万 - 项目类别:
Lasting Impacts: Dynamic, Fully Natural Bioprinted 3D Human Neurovascular Biomimetic Model to Study Traumatic Brain Injury Pathophysiology
持久影响:用于研究创伤性脑损伤病理生理学的动态、完全自然的生物打印 3D 人体神经血管仿生模型
- 批准号:
10318506 - 财政年份:2021
- 资助金额:
$ 45.4万 - 项目类别:
A Bioengineered Model for Deciphering Lymphatic Dysfunction in Inflammation
破译炎症中淋巴功能障碍的生物工程模型
- 批准号:
10354568 - 财政年份:2021
- 资助金额:
$ 45.4万 - 项目类别:
Multi-Parametric Imaging of Systemic Cardiovascular and Cerebrovascular Health in Alzheimer's Disease
阿尔茨海默病全身心脑血管健康的多参数成像
- 批准号:
10370527 - 财政年份:2021
- 资助金额:
$ 45.4万 - 项目类别: