Computational methods using electronic health records and registry data to detect and predict clinical outcomes in rheumatic disease
使用电子健康记录和登记数据检测和预测风湿病临床结果的计算方法
基本信息
- 批准号:9912723
- 负责人:
- 金额:$ 13.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-10 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdverse eventAgeAlgorithmsAntirheumatic AgentsAreaAutoimmune ProcessBiologicalBiological Response Modifier TherapyCaliforniaCategoriesCessation of lifeCharacteristicsClinicClinicalClinical SciencesClinics and HospitalsCodeCombination MedicationComputing MethodologiesDataData SetDatabasesDemographic FactorsDevelopment PlansDiseaseDisease-Modifying Second-Line DrugsElectronic Health RecordEnvironmentEpidemiologistEpidemiologyEthnic OriginEventFutureGoalsGoldHospitalizationIndividualInfectionInformaticsInstitutesInterdisciplinary StudyK-Series Research Career ProgramsLeadMarketingMentored Research Scientist Development AwardMentorsMentorshipMethodsModelingMonitorMorbidity - disease rateNCI Scholars ProgramOpportunistic InfectionsPatient-Focused OutcomesPatientsPatternPharmaceutical PreparationsPharmacotherapyPopulationPositioning AttributeProbabilityQuality of lifeRaceRandomized Controlled TrialsRecommendationRegistriesReportingResearchResearch PersonnelRheumatismRheumatoid ArthritisRheumatologyRiskRisk AssessmentRisk FactorsSafetySample SizeSan FranciscoSensitivity and SpecificitySerious Adverse EventSeveritiesStructureSubgroupSystemSystemic Lupus ErythematosusTimeTrainingTranslational ResearchUniversitiesUniversity HospitalsValidationWorkadverse event riskbasecareer developmentcomorbiditydata registrydisorder controlelectronic structureethnic minority populationexperiencehigh riskimprovedindividual patientindividualized medicineinfection rateinfection risklarge datasetsmedical schoolsmedical specialtiespatient safetypatient stratificationpersonalized medicinepopulation basedpredict clinical outcomepredictive modelingprogramsracial and ethnicresearch and developmentsafety outcomessexskillssociodemographicsstatisticsstructured datasymposiumtext searchingunstructured data
项目摘要
PROJECT SUMMARY / ABSTRACT
This is a new application for a K01 award for Dr. Milena Gianfrancesco, an epidemiologist at the University of
California, San Francisco (UCSF) School of Medicine, who plans a research program focusing on
understanding risk factors as they relate to rheumatic disease patient outcomes, such as adverse events.
Combined with a training plan focused on computational text mining methods and advanced causal inference
statistics, the goal of the current study is to use large electronic health record and national registry data that
reflects real-world prescribing patterns to examine the risk of infection attributed to biologic disease-modifying
anti-rheumatic drugs in individuals with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE).
While biologic medications have improved disease control and are associated with significant gains in patients’
quality of life, several studies have demonstrated that biologic use is associated with an increased risk of
serious adverse events, such as infection. How this risk differs based on a variety of patient factors, such as
age, race, and ethnicity, is currently unknown, leaving clinicians with insufficient information to predict the
probability of an adverse event occurring in a given patient who is prescribed a particular biologic.
This proposal will utilize established local electronic health record and national registry data to examine over
80,000 individuals with RA and SLE to address three specific aims. In Aim 1, Dr. Gianfrancesco will apply and
validate a text mining system to identify incident clinical and opportunistic infections from clinical notes. In Aim
2, Dr. Gianfrancesco will use the same databases to determine the longitudinal causal effect of biologics on
risk of infection. In Aim 3, a risk-assessment model to predict risk of infection will be developed and validated in
a rheumatology clinic. Findings from this study will further elucidate factors associated with infectious risk for
individuals prescribed biologics, thereby improving their safety in the ambulatory settings.
Dr. Gianfrancesco has assembled an exceptional mentorship team with expertise in computational text mining
methods, advanced causal inference statistics, rheumatology and patient safety outcomes, as well as
experience using national registry data to address these questions. She will have access to a rich research
environment and provided support for career development through programs such as the UCSF Clinical and
Translational Science Institute K-scholars program. Formal coursework and mentoring will also be
supplemented with attendance at national conferences related to rheumatology, epidemiology, and informatics.
Completing the proposed research and career development plan will allow Dr. Gianfrancesco to gain
experience in state-of-the-art computational methods using large datasets to better understand important
patient outcomes, such as serious adverse events. This mentored career development award will provide the
skills, mentorship, and experience necessary to propel her to independence and enable her to lead an
independent multidisciplinary research program.
项目摘要 /摘要
这是为K01奖的新申请Milena Gianfrancesco博士,他是大学的流行病学家
加利福尼亚州旧金山(UCSF)医学院,计划一项研究计划
了解与风湿病患者结局有关的风险因素,例如不良事件。
结合针对计算文本挖掘方法和高级因果推断的培训计划
统计数据,本研究的目的是使用大型电子健康记录和国家注册表数据
反映现实的处方模式,以检查归因于生物疾病改良的感染风险
类风湿关节炎(RA)和全身性红斑红血病(SLE)的个体中的抗流血药物。
虽然生物药物改善了疾病控制,并且与患者的显着增长有关
生活质量,几项研究表明,生物学使用与增加的风险有关
严重的不良事件,例如感染。这种风险差异如何基于各种患者因素,例如
年龄,种族和种族目前尚不清楚,使临床医生获得的信息不足以预测
处方特定生物学的给定患者发生不良事件的可能性。
该提案将利用已建立的当地电子健康记录和国家注册表数据进行检查
80,000名RA和SLE的人可以解决三个特定目标。在AIM 1中,Gianfrancesco博士将申请并
验证文本挖掘系统以识别临床注释中的临床和机会性感染。目标
2,Gianfrancesco博士将使用相同的数据库来确定生物制剂的纵向因果
感染的风险。在AIM 3中,将开发和验证一个预测感染风险的风险评估模型
风湿病诊所。这项研究的结果将进一步阐明与传染性风险相关的因素
个人开了生物制剂,从而提高了在门诊环境中的安全性。
Gianfrancesco博士已经组建了一个具有计算文本挖掘专业知识的杰出心态团队
方法,高级因果推理统计,风湿病学和患者安全结果以及
使用国家注册表数据来解决这些问题的经验。她将有丰富的研究
环境并通过UCSF临床和
翻译科学研究所K-Scholars计划。正式的课程和心理工作也将是
补充与风湿病,流行病学和信息有关的国家会议的出席。
完成拟议的研究和职业发展计划将使Gianfrancesco博士获得
使用大型数据集的最新计算方法经验,以更好地理解重要
患者的结果,例如严重的不良事件。这个重要的职业发展奖将为
促使她独立并使她能够领导她的技能,精神训练和经验
独立的多学科研究计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Milena Anne Gianfrancesco其他文献
Milena Anne Gianfrancesco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Milena Anne Gianfrancesco', 18)}}的其他基金
Computational methods using electronic health records and registry data to detect and predict clinical outcomes in rheumatic disease
使用电子健康记录和登记数据检测和预测风湿病临床结果的计算方法
- 批准号:
10349472 - 财政年份:2019
- 资助金额:
$ 13.04万 - 项目类别:
Computational methods using electronic health records and registry data to detect and predict clinical outcomes in rheumatic disease
使用电子健康记录和登记数据检测和预测风湿病临床结果的计算方法
- 批准号:
10400540 - 财政年份:2019
- 资助金额:
$ 13.04万 - 项目类别:
Examining the causal effect of sociodemographic and genetic factors on patient safety outcomes in individuals prescribed high-risk immunosuppressive medications
检查社会人口统计学和遗传因素对服用高风险免疫抑制药物的个体患者安全结果的因果影响
- 批准号:
9327592 - 财政年份:2017
- 资助金额:
$ 13.04万 - 项目类别:
Direct and indirect effects of obesity genes on multiple sclerosis
肥胖基因对多发性硬化症的直接和间接影响
- 批准号:
8984235 - 财政年份:2015
- 资助金额:
$ 13.04万 - 项目类别:
相似海外基金
Impact of Body Composition and Related Inflammatory and Immune States on Prognosis of Non-Muscle Invasive Bladder Cancer
身体成分及相关炎症和免疫状态对非肌肉浸润性膀胱癌预后的影响
- 批准号:
10674401 - 财政年份:2023
- 资助金额:
$ 13.04万 - 项目类别:
Dose Flexible Combination 3D-Printed Delivery Systems for Antiviral Therapy in Children
用于儿童抗病毒治疗的剂量灵活组合 3D 打印输送系统
- 批准号:
10682185 - 财政年份:2023
- 资助金额:
$ 13.04万 - 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 13.04万 - 项目类别:
Developing a Risk Index for Functional Decline in Middle-Aged and Older Adults with HIV
制定中老年艾滋病毒感染者功能衰退的风险指数
- 批准号:
10762280 - 财政年份:2023
- 资助金额:
$ 13.04万 - 项目类别:
Cafe Move: A Novel Program for Prevention of Age-Related Physical Frailty
Cafe Move:预防与年龄相关的身体虚弱的新计划
- 批准号:
10861960 - 财政年份:2023
- 资助金额:
$ 13.04万 - 项目类别: