Refining and Validating Borderline Personality Disorder Phenotypes Through Factor Mixture Modeling
通过因子混合模型细化和验证边缘性人格障碍表型
基本信息
- 批准号:9911299
- 负责人:
- 金额:$ 2.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-10 至 2020-07-01
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAlgorithmsArchivesAssessment toolBehaviorBig DataBiological MarkersBorderline Personality DisorderCategoriesCellular PhoneClinicalClinical SciencesComputer ModelsConsultationsDataData AnalysesDiagnosticDimensionsDiseaseEcological momentary assessmentEducational workshopEmergency department visitEmotionalEnsureEnvironmentFactor AnalysisFellowshipFoundationsFundingGenderGoalsHealth Care CostsHeterogeneityImpairmentIndividualInpatientsInterventionInterviewLifeMachine LearningMental disordersMethodologyModelingMonitorNational Institute of Mental HealthOccupationalOnset of illnessOutcomeOutcome StudyOutpatientsPatientsPatternPennsylvaniaPhenotypePrediction of Response to TherapyProcessPsychopathologyPublic HealthPublicationsResearchResearch PersonnelResourcesRiskSamplingScientistSelf ConceptSeveritiesSourceStructureStudentsSuicideSurveysSymptomsTechniquesTestingTimeTrainingTreatment EffectivenessTreatment outcomeUniversitiesValidationVariantWorkaccomplished suicidecareerclassification algorithmcomorbiditycostdata archiveeffective therapyflexibilityhealth care service utilizationimprovedinnovationnovelpersonalized interventionpersonalized medicinepersonalized predictionsprospectiveprototypepsychologicrecruitresponseskillssocialsoundsuccesssuicidal risktheoriestherapy developmenttool
项目摘要
The proposed research seeks to clarify the symptomatic heterogeneity of borderline personality disorder (BPD)
by examining BPD phenotypes through advanced latent variable modeling. A second, innovative aim is to
validate these findings through intensive longitudinal assessment in daily life. BPD is associated with high rates
of emergency room visits and costly healthcare service utilization, affecting 10-20% of psychiatric outpatients
and 20-40% of psychiatric inpatients. BPD also contributes to impaired social and occupational functioning and
significant suicide risk, with 1 in 10 individuals with BPD completing suicide. Recent research has aimed to
enhance treatment effectiveness for BPD by identifying prototypical patterns of symptom manifestation that
may suggest ideographic treatment targets. However, no research has simultaneously included: a) a
sufficiently large patient sample; b) ecologically sound validation of results; and c) use of appropriate statistical
techniques. The proposed project builds on this research through two aims. Aim 1: Utilize a model comparison
approach to identify BPD phenotypes in a large psychiatric outpatient sample assessed via semi-structured
diagnostic interviews (Study 1). Aim 2: Validate the results of Study 1 by applying phenotype classification
algorithms produced in Study 1 to a smaller sample of patients who have completed 21 days of momentary
surveys on symptoms and clinical outcomes (Study 2). To address Aim 1, factor mixture modeling (FMM)—a
novel, flexible, and integrative latent variable modeling approach—will be compared to standard factor analysis
and latent class analysis in order to evaluate the dimensional and categorical structure of BPD. We expect a
single-factor, multi-class FMM will best explain heterogeneity in BPD, over and above other sources of
heterogeneity (e.g., gender, comorbidity). To address Aim 2, we will use a prototype-matching approach to
algorithmically assign patients in the validation sample to phenotypes identified in Aim 1 and determine their
predictive validity in terms of daily clinical outcomes. Results of this project will provide empirically grounded
personalized prediction tools for BPD intervention and treatment development, in line with the NIMH’s goal of
“developing, testing, and refining tools and methodologies… for personalized risk and trajectory prediction and
intervention.” This fellowship will allow the applicant to receive tailored consultation from experts in
methodology, data analysis, and BPD theory and assessment, as well as advanced statistical training and
grantsmanship courses and workshops. This training will be enhanced by the resource-rich environment and
explicit support of student research and funding provided by the Pennsylvania State University, as well as the
support of Dr. Kenneth Levy and his lab. This promising young researcher will gain training in computational
modeling, proficiency in working with “big data,” increased understanding of conceptual and nosological
models of BPD, and further skills in disseminating research findings through publication and presentation, as
vital steps towards an independent research career in translational clinical science.
拟议的研究旨在阐明边缘人格障碍(BPD)的症状异质性
通过通过高级潜在变量建模检查BPD表型。第二个创新的目标是
通过日常生活中的密集纵向评估来验证这些发现。 BPD与高率有关
急诊室就诊和昂贵的医疗保健服务利用率,影响10-20%的精神病院门诊患者
和20-40%的精神病患者。 BPD还有助于社会和占用功能受损
显着的自杀风险,有十分之一的BPD患者完成自杀。最近的研究旨在
通过识别症状表现的原型模式来提高BPD的治疗效果
可能表明意识形态治疗目标。但是,没有研究包括:a)
足够大的患者样本; b)对结果的生态验证; c)使用适当的统计数据
技术。拟议的项目通过两个目标建立在这项研究的基础上。目标1:使用模型比较
通过半结构化评估的大精神病院门诊样本中识别BPD表型的方法
诊断访谈(研究1)。目标2:通过应用表型分类验证研究1的结果
在研究1中生成的算法至较小的较小的患者样本,这些患者已完成21天
症状和临床结果的调查(研究2)。要解决目标1,要素混合物建模(FMM) - A
新颖,灵活和集成的潜在变量建模方法 - 将与标准因子分析进行比较
和潜在类别分析,以评估BPD的维度和分类结构。我们期望一个
单因素,多级FMM可以最好地解释BPD中的异质性,超过其他来源
异质性(例如性别,合并症)。要解决AIM 2,我们将使用一种原型匹配方法
算法将验证样本中的患者分配给AIM 1中鉴定的表型,并确定其
预测有效性就每日临床结果而言。该项目的结果将迫切地扎根
BPD干预和治疗开发的个性化预测工具,符合NIMH的目标
“开发,测试和完善工具和方法……用于个性化的风险和轨迹预测以及
干预。”该奖学金将使申请人可以从专家那里获得量身定制的咨询
方法论,数据分析以及BPD理论和评估以及高级统计培训以及
授予技巧课程和讲习班。资源丰富的环境和
宾夕法尼亚州立大学提供的学生研究和资金的明确支持以及
Kenneth Levy博士和他的实验室的支持。这承诺年轻的研究人员将获得计算的培训
建模,在使用“大数据”方面的熟练程度,对概念和典型学的了解增加了
BPD的模型,以及通过出版和演示来传播研究结果的进一步技能,
迈向翻译临床科学独立研究职业的重要步骤。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Norman Johnson其他文献
Benjamin Norman Johnson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
社交网络上观点动力学的重要影响因素与高效算法
- 批准号:62372112
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 2.54万 - 项目类别:
Previvors Recharge: A Resilience Program for Cancer Previvors
癌症预防者恢复活力计划:癌症预防者恢复力计划
- 批准号:
10698965 - 财政年份:2023
- 资助金额:
$ 2.54万 - 项目类别:
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 2.54万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 2.54万 - 项目类别: