Mechanically active extracellular matrix fibers for tissue engineering applications
用于组织工程应用的机械活性细胞外基质纤维
基本信息
- 批准号:9910682
- 负责人:
- 金额:$ 3.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-13 至 2023-06-12
- 项目状态:已结题
- 来源:
- 关键词:Arterial Fatty StreakArteriesBehaviorBindingBinding ProteinsBinding SitesBiochemicalBiologicalBiomedical EngineeringBostonCardiovascular DiseasesCardiovascular PhysiologyCardiovascular systemCell Differentiation processCellsChimeric ProteinsCollagenCommunicationCommunitiesCritical ThinkingCustomDevelopmentDrug ControlsDrug Delivery SystemsEndothelial CellsEndotheliumEngineeringEnvironmentExperimental DesignsExtracellular MatrixExtracellular Matrix ProteinsFiberFibronectinsFluorescenceGoalsGrowth FactorHuman bodyHydration statusHydrogelsImplantIndustrializationInterventionJournalsKnowledgeLamininLearningLigandsLiteratureMechanicsMembraneMethodsMinorModelingModulusNidogenOutcomePaperPathologyPhysiologicalPolymersProcessPropertyProtein EngineeringProtein FragmentProteinsResearchResearch PersonnelRoleRunningSignal TransductionSilkSiteStainsStimulusStressStretchingTechnical ExpertiseTechniquesTenascinTestingTimeTissue EngineeringTissuesTrainingUniversitiesVascular GraftVascular PatencyWritingbasecareercell behaviorcollaborative environmentdesignexperienceexperimental studyflexibilityimprovedimproved outcomeinterestlearning materialsmechanical forcemechanical propertiesmigrationnoveloptical fiberphysical propertyprotein functionresponsescaffoldskillssupportive environmentsymposiumtherapeutic proteintool
项目摘要
Project Summary/Abstract
Tissues inherently interact mechanically with their surrounding matrix, but tissue engineering materials have not
fully exploited this interaction to enhance integration with the human body. Moreover, only a few materials have
been developed that allow control of drug delivery through mechanical forces, and existing methods use
synthetic polymers which have limited potential for tissue integration or use mechanically weak hydrogels. The
goal of the research plan is to develop mechanically active and tunable fibers of extracellular matrix proteins that
leverage mechano-biochemical properties to control cell behavior in cardiovascular tissue engineering
applications. The research plan proposes to develop a new class of materials that could improve long-term
patency of vascular grafts by delivering bioactive molecules that encourage endothelialization in response to
mechanical stimuli, while integrating with tissues more easily than synthetic polymers. The mechanical properties
of the material will be tuned by altering the composition. Extracellular matrix fibers of varied compositions will be
generated through wet spinning and mechanically tested in a wet and dry state using custom-built and Instron
tensile testers. This will allow us to determine the relationship between protein content and mechanical properties
like modulus, strength, and toughness in order to generate fibers with specific properties. New mechanosensitive
interactions between extracellular matrix proteins and their ligands, as well as the impact of these interactions
on cell behavior and signaling will be identified. To do this, extracellular matrix fibers will be stretched and binding
of proteins to the fibers will be observed through immunostaining. The interactions identified could be new
mechanisms through which cell detect the mechanics of their environment. Protein engineering will be used to
generate therapeutic proteins that release from extracellular matrix fibers in response to defined mechanical
stimuli, which could promote endothelialization of the material. The material could be used to enhance tissue
integration and improve long term outcomes in vascular grafts. Completing this project will help the applicant
achieve her career goals of becoming a leading industrial researcher because of the critical thinking,
experimental design, and new technical skills she will gain in cell signaling, cell behavior, and protein
engineering. The applicant will also improve her career trajectory by enhancing her communication skills and
conceptual knowledge through writing research papers, attending and presenting at conferences and seminars,
and running journal clubs. The supportive and collaborative environment of the Boston University Biomedical
Engineering department, as well as the relevant expert knowledge of her Sponsor, Co-sponsor, and
collaborators, will help the applicant successfully complete the training and research plans.
项目概要/摘要
组织本质上与其周围基质发生机械相互作用,但组织工程材料却没有
充分利用这种相互作用来增强与人体的融合。而且,只有少数材料具有
已开发出允许通过机械力控制药物输送的技术,并且使用现有方法
组织整合潜力有限的合成聚合物或使用机械性能较弱的水凝胶。这
该研究计划的目标是开发细胞外基质蛋白的机械活性和可调纤维
利用机械生化特性来控制心血管组织工程中的细胞行为
应用程序。该研究计划提出开发一种可以改善长期效果的新型材料
通过提供生物活性分子促进内皮化以响应血管移植物的通畅
机械刺激,同时比合成聚合物更容易与组织结合。机械性能
材料的性能将通过改变成分来调整。不同成分的细胞外基质纤维将
通过湿纺产生,并使用定制和 Instron 在湿和干状态下进行机械测试
拉力测试仪。这将使我们能够确定蛋白质含量和机械性能之间的关系
例如模量、强度和韧性,以产生具有特定性能的纤维。新型机械敏感
细胞外基质蛋白及其配体之间的相互作用,以及这些相互作用的影响
将确定对细胞行为和信号传导的影响。为此,细胞外基质纤维将被拉伸并结合
通过免疫染色观察蛋白质对纤维的影响。确定的相互作用可能是新的
细胞检测其环境机制的机制。蛋白质工程将用于
产生治疗性蛋白质,这些蛋白质响应特定的机械作用从细胞外基质纤维中释放
刺激,可以促进材料的内皮化。该材料可用于增强组织
整合并改善血管移植物的长期结果。完成该项目将有助于申请人
由于批判性思维,她实现了成为领先工业研究员的职业目标,
她将在细胞信号传导、细胞行为和蛋白质方面获得实验设计和新技术技能
工程。申请人还将通过提高沟通技巧和能力来改善她的职业轨迹
通过撰写研究论文、参加会议和研讨会并在会上发表演讲来获取概念知识,
和经营期刊俱乐部。波士顿大学生物医学学院的支持和协作环境
工程部门,以及其赞助商、联合赞助商和合作伙伴的相关专业知识
合作者,将帮助申请人顺利完成培训和研究计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gwendolyn Ann Hoffmann其他文献
Gwendolyn Ann Hoffmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gwendolyn Ann Hoffmann', 18)}}的其他基金
Mechanically active extracellular matrix fibers for tissue engineering applications
用于组织工程应用的机械活性细胞外基质纤维
- 批准号:
10357564 - 财政年份:2020
- 资助金额:
$ 3.62万 - 项目类别:
相似国自然基金
动脉粥样硬化发展进程中,巨噬/泡沫细胞力学特性的改变及其对细胞迁移行为的影响与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
CircRNA_0006799竞争性结合miR-1269a调控PTEN影响下肢动脉硬化闭塞症血管平滑肌细胞生物学行为的机制研究
- 批准号:81800416
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
LncRNA-ATB调控滋养细胞生物学行为在重度子痫前期中的作用及机制研究
- 批准号:81871175
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
动脉粥样硬化炎症过程中巨噬细胞极化与自噬行为的相互影响及黄连解毒汤的干预作用研究
- 批准号:81760790
- 批准年份:2017
- 资助金额:34.0 万元
- 项目类别:地区科学基金项目
神经节苷脂GM3对低密度脂蛋白氧化和单核-巨噬细胞行为的影响及其分子机制
- 批准号:81560083
- 批准年份:2015
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Glycocalyx Regeneration to Heal Vascular Inflammation and Atherosclerosis
糖萼再生治愈血管炎症和动脉粥样硬化
- 批准号:
10347882 - 财政年份:2022
- 资助金额:
$ 3.62万 - 项目类别:
Glycocalyx Regeneration to Heal Vascular Inflammation and Atherosclerosis
糖萼再生治愈血管炎症和动脉粥样硬化
- 批准号:
10545041 - 财政年份:2022
- 资助金额:
$ 3.62万 - 项目类别:
Integrating Coronary Atherosclerosis with Physiologic Features for Optimized Risk Stratification
将冠状动脉粥样硬化与生理特征相结合以优化风险分层
- 批准号:
10364760 - 财政年份:2021
- 资助金额:
$ 3.62万 - 项目类别:
Influence of sleep on hematopoietic stem cell diversity and clonality in cardiovascular disease
睡眠对心血管疾病中造血干细胞多样性和克隆性的影响
- 批准号:
10408186 - 财政年份:2021
- 资助金额:
$ 3.62万 - 项目类别:
Influence of sleep on hematopoietic stem cell diversity and clonality in cardiovascular disease
睡眠对心血管疾病中造血干细胞多样性和克隆性的影响
- 批准号:
10383858 - 财政年份:2021
- 资助金额:
$ 3.62万 - 项目类别: