Uncovering novel roles for splicing factor SF3B1 in transcription dynamics, R-loop metabolism, and chromatin structure
揭示剪接因子 SF3B1 在转录动力学、R 环代谢和染色质结构中的新作用
基本信息
- 批准号:9910740
- 负责人:
- 金额:$ 3.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-26 至 2022-03-25
- 项目状态:已结题
- 来源:
- 关键词:ATAC-seqAcuteAcute Erythroblastic LeukemiaAcute Myelocytic LeukemiaAffectArchitectureBindingCell LineCellsCellular StressChromatinChromatin StructureComplexDNADNA StructureDNA biosynthesisDNA-Directed RNA PolymeraseDataDefectDepositionDiseaseDysmyelopoietic SyndromesENG geneElderlyEnzymesEssential GenesEventGene ExpressionGenesGenetic TranscriptionGenomic InstabilityGenomicsGoalsHematological DiseaseHourHumanHuman GenomeHybridsInvadedK-562K562 CellsLeadLinkLiteratureMeasuresMediatingMedicalMetabolismMolecularMutagenesisMutationNatural ProductsNucleosomesOxidative StressPathologicPatternPhysiologicalPlayProcessRNARNA SplicingRegulationResolutionRoleSpliced GenesSpliceosome Assembly PathwaySpliceosomesStressStructureTestingTimeTranscriptTranscription ElongationU2 Small Nuclear RibonucleoproteinVirus Diseasesbasedriver mutationgenome-wideinsightnovelpreventreplication stressresponseribonuclease H1tooltranscriptome sequencing
项目摘要
Project Summary
R-loops are non-B DNA structures that form during transcription when the nascent RNA strand anneals to the
template DNA strand forming a RNA:DNA hybrid. The Chedin lab has demonstrated that R-loops are prevalent
and conserved structures that form throughout the human genome. Understanding the function of R-loops under
physiological and pathological conditions is an important goal in the field, because mis-regulation of R-loops has
been implicated in a growing number of human disorders. A leading mechanism in the field is that splicing
inhibition causes an increase in unspliced nascent transcripts that can then more readily invade the DNA behind
the advancing RNA polymerase. To uncover the connections between splicing disruption and R-loops, I will
focus on SF3B1, a subunit in the SF3b complex which plays a critical role in the early stages of spliceosome
assembly. Importantly, Pladienolide B (PladB) is a natural product that directly inhibits splicing upon SF3b
binding. Thus, PladB provides a tool for assessing dynamic changes in a temporal manner. In keeping with
available literature, my initial hypothesis was that PladB treatment will lead to elevated R-loop formation over
regions that accumulate unspliced transcripts. Preliminary data, however, is inconsistent with this idea and
instead suggests that most R-loop changes that accompany SF3b inhibition are caused by perturbation of
transcriptional dynamics. Early termination events cause directional R-loop losses through gene bodies. Lack of
termination at gene ends, by contrast, cause “downstream of gene (DoG)” transcription and directional R-loop
gains over DoG regions. Both events collectively affect over a thousand genes. DoG transcription has been
observed in response to several environmental stresses. This raises the possibility that splicing inhibition is a
shared molecular link that drives DoG transcription. DoG transcription upon viral infection has been further linked
to large scale chromatin opening throughout the DoG region. This raises the possibility that R-loops, which
include a rigid A-form-like RNA:DNA hybrid, cause chromatin decondensation by preventing nucleosome
wrapping or deposition. Thus, my revised hypothesis is that acute splicing inhibition affects transcription
elongation profiles and leads to shifts in the genomic patterns of co-transcriptional R-loops. Aim 1 will
determine the global dynamic effects of acute splicing inhibition on splicing, R-loop and transcription patterns. I
expect to clarify the temporal and positional relationships between splicing inhibition and R-loop formation at
high-resolution and to identify a novel role for SF3b in regulating transcription dynamics. Aim 2 will determine if
R-loops generated from DoG transcription drive changes in chromatin architecture under different cellular
stresses. This project will provide key insights into the inter-relationship between co-transcriptional splicing and
R-loop formation and their impact on transcriptional dynamics and chromatin architecture under stress
conditions.
项目摘要
R环是当新生的RNA链退火时在转录过程中形成的非B DNA结构
模板DNA链形成RNA:DNA杂交。 Chedin实验室已经证明R-loops很普遍
并构成在整个人类基因组中形成的结构。了解R-loops的功能
生理和病理状况是该领域的重要目标,因为R环的错误调节具有
越来越多的人类疾病暗示了我们。该领域的主要机制是剪接
抑制作用会导致未剪切的新生转录物增加,然后更容易侵入后面的DNA
前进的RNA聚合酶。要发现剪接破坏与R环之间的连接,我将
专注于SF3B1,这是SF3B复合体中的亚基,在剪接体的早期阶段起着至关重要的作用
集会。重要的是,Pladienolide B(PladB)是一种直接抑制SF3B剪接的天然产物
结合。这就是PLADB提供了一种以临时方式评估动态变化的工具。符合
可用的文献,我最初的假设是PLADB治疗将导致R环的形成升高
积累未填充成绩单的区域。但是,初步数据与这个想法不一致,
相反,大多数涉及SF3B抑制的R环变化是由扰动引起的
转录动力学。早期终止事件通过基因体导致定向R环损失。缺乏
相比之下,基因末端的终止是“基因(狗)下游”的转录和定向R环的导致
在狗区域上获得收益。这两个事件都集体影响一千多个基因。狗的转录已经
观察到几种环境应力。这增加了剪接抑制是一个的可能性
共享分子链路,驱动狗的转录。病毒感染后的狗转录已进一步联系
大规模染色质在整个狗区域开放。这增加了R-loops的可能性,
包括一个刚性A形式的RNA:DNA杂化,通过预防核小体引起染色质脱敏
包装或沉积。那是我修订的假设是急性剪接抑制会影响转录
伸长谱并导致共转录R环的基因组模式的变化。目标1意志
确定急性剪接抑制对剪接,R环和转录模式的全局动态影响。我
期望阐明剪接抑制与R环形成之间的暂时和位置关系
高分辨率并确定SF3B在调节转录动力学中的新作用。 AIM 2将确定是否
由狗转录驱动器在不同细胞下染色质体系结构的变化产生的R环变化
压力。该项目将为共同剪接和
R环形成及其对在压力下的转录动态和染色质体系结构的影响
状况。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daisy Castillo Guzman其他文献
Daisy Castillo Guzman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
Mechanisms and consequences of 3'UTR isoform diversity in erythropoiesis
红细胞生成中 3UTR 亚型多样性的机制和后果
- 批准号:
10387610 - 财政年份:2022
- 资助金额:
$ 3.79万 - 项目类别:
Role of the TET1 short isoform in MDS development and maintenance
TET1 短亚型在 MDS 开发和维护中的作用
- 批准号:
10363322 - 财政年份:2022
- 资助金额:
$ 3.79万 - 项目类别:
Mechanisms and consequences of 3'UTR isoform diversity in erythropoiesis
红细胞生成中 3UTR 亚型多样性的机制和后果
- 批准号:
10705017 - 财政年份:2022
- 资助金额:
$ 3.79万 - 项目类别:
Role of the TET1 short isoform in MDS development and maintenance
TET1 短亚型在 MDS 开发和维护中的作用
- 批准号:
10552668 - 财政年份:2022
- 资助金额:
$ 3.79万 - 项目类别:
Genetically faithful modeling of NUP98 rearrangement and co-alterations in acute myeloid leukemia
急性髓性白血病中 NUP98 重排和共同改变的遗传忠实模型
- 批准号:
10599975 - 财政年份:2021
- 资助金额:
$ 3.79万 - 项目类别: