Non-viral Reprogramming of Intervertebral Disc Cells for the treatment of Discogenic back pain
椎间盘细胞非病毒重编程治疗椎间盘源性背痛
基本信息
- 批准号:9911144
- 负责人:
- 金额:$ 36.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-20 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAdolescenceAdultAnimal ModelAutomobile DrivingBehaviorBiologicalBiomedical EngineeringBlood VesselsBrachyury proteinCanis familiarisCatabolismCell Culture TechniquesCellsCellularityChronicChronic low back painClinicalClinical TrialsCognitionCommunitiesControl GroupsDNADataDevelopmentDiseaseDog DiseasesDrug AddictionEconomic BurdenEndothelial CellsEngineeringExtracellular MatrixFOXF1 geneFailureFibroblastsFibrosisFunctional disorderGAG GeneGene ProteinsGenerationsGeneticGenomeGlycosaminoglycansGoalsHealthHeightHumanHyperalgesiaIn SituIn VitroInflammationInflammatoryInjuryIntervertebral disc structureLeadLow Back PainMagnetic Resonance ImagingMechanicsMedicalMethodsModelingMusNerveOperative Surgical ProceduresOpioidPainPathologicPathologyPatientsPhasePhase TransitionPhenotypePublic HealthPuncture procedureQuality of lifeResearchResearch PersonnelResearch PriorityRodent ModelSocietiesSomatic CellSpeedStem cellsStructureSystemTechnologyTherapeuticTherapeutic EffectTissuesTransfectionTranslatingTranslational ResearchTreatment EfficacyUnited States National Institutes of HealthValidationVertebral columnVeterinariansViral VectorWorkaddictionclinically relevantcytotoxicitydiscogenic painextracellularextracellular vesiclesgene therapyhealinghuman diseaseimprovedin vivoin vivo Modelinflammatory paininnovationinterdisciplinary approachintervertebral disk degenerationminimally invasivemouse modelmultidisciplinarynanoneurotrophic factornovelnucleus pulposusopioid epidemicoptimal treatmentspain behaviorpain modelpain patientpain reliefpain symptompre-clinicalprogramsprotein expressionreduce symptomsrestorationsocioeconomicsspontaneous painstemstem cell therapytooltranscription factortranslational approachtranslational model
项目摘要
Project Summary/Abstract
Chronic low back pain exerts a significant socio-economic burden on society and is a major contributor to the
growing opioid crisis. Last year, NIH “launched the HEAL (Helping to End Addiction Long-term) initiative, an
aggressive, trans-agency effort to speed scientific solutions to stem the national opioid public health crisis”.
This enormous burden is largely because studies have failed to target the underlying mechanisms associated
with pain generation. Intervertebral disc (IVD) degeneration is strongly associated with the pathophysiology of
low back pain and identifying non-addictive minimally invasive treatments for discogenic back pain (DBP) is a
research priority. Pathological IVD changes include extracellular matrix (ECM) breakdown, inflammation and
aberrant nerve/vascular ingrowth which have been shown to significantly correlate with pain. Therefore the
optimal therapy for DBP would target both structural restoration and reduce the symptoms of pain. Yet current
strategies involving the use of stem cells or gene therapy are faced with a number of challenges which include
failure of stem cells to adapt to the harsh IVD microenvironment, the use of viral vectors and unwarranted DNA
deletions within the host genome. Furthermore clinicians do not have access to clinically relevant tools or
technologies that could directly help treat the underlying disease in patients with DBP. There is a critical need
for a biological non-addictive strategy that addresses these limitations. Our goal is to use novel cellular
reprogramming technologies to alter the innate cell phenotype of native diseased IVD cells to a healthy
extracellular producing and anti-catabolic/inflammatory phenotype in human in vitro cell culture and in vivo
models of DBP. Non-viral delivery for transporting genetic cargo into the cell such as engineered extracellular
vesicles (EVs) or tissue nano-transfection (TNT) offer safe and minimally invasive methods for reprogramming
somatic cells and recent work by the investigators has demonstrated successful reprogramming of adult
fibroblasts into endothelial cells in vivo mouse models. We propose using these innovative non-viral delivery
systems to deliver genetic cargo to IVDs in vitro and in vivo. The first specific aim (R61 Phase 1 Aim 1) focuses
on the effects of EV or TNT delivery of transcription factors on diseased human nucleus pulposus cells and
tissue in vitro examining changes in ECM and catabolic, inflammatory and pain markers. The second aim (R61
Phase 1 Aim 2) investigates the effects of EV or TNT delivery of transcription factors in mouse IVD puncture
models of DBP assessing changes in disc structure/function, pain, cognition and cytotoxicity. These studies
are both significant and highly innovative because they combine a unique multi-disciplinary team of medical
and veterinary clinicians, spine biologists, neuroscientists, biomedical engineers, and a biostatistician to
interrogate the use of these novel concepts and technologies to treat DBP. The broader impacts of this
proposal and transition to the R33 portion involve assessing this strategy in clinically relevant
chondrodystrophic dogs that develop DBP spontaneously followed by clinical trials in patient dogs with DBP.
项目摘要/摘要
慢性下腰痛为社会带来了重要的社会经济伯恩,是导致该社会的主要贡献者
增长阿片类药物危机。去年,NIH“启动了治愈(有助于长期结束成瘾)倡议,这是
积极的,跨机构的努力,以加快科学解决方案来阻止国家阿片类药物公共卫生危机。”
这种巨大的伯宁主要是因为研究未能针对相关的潜在机制
产生疼痛。椎间盘(IVD)变性与病理生理密切相关
下背痛并识别出非添加性的微创腰痛治疗方法(DBP)是
研究优先。病理IVD变化包括细胞外基质(ECM)分解,注射和
异常的神经/血管内膜已显示与疼痛显着相关。因此
DBP的最佳治疗将既靶向结构恢复并减轻疼痛的症状。但最新
涉及使用干细胞或基因治疗的策略面临许多挑战,包括
干细胞无法适应HARMH IVD微环境,使用病毒载体和不必要的DNA
宿主基因组中的删除。此外,临床医生无法获得临床相关工具或
可以直接帮助治疗DBP患者的潜在疾病的技术。有急需
针对解决这些局限性的生物非添加策略。我们的目标是使用新颖的蜂窝
重编程技术以将天然解散的IVD细胞的先天细胞表型改变为健康
人体体外细胞培养和体内的细胞外产生和抗代谢/炎症表型
DBP的模型。非病毒输送,用于将遗传货物运输到细胞中,例如工程细胞外
囊泡(EV)或组织纳米转染(TNT)提供了安全且微创的方法用于重编程
调查人员的躯体细胞和最近的工作表明,成人的成功重编程
成纤维细胞进入体内小鼠模型中的内皮细胞。我们建议使用这些创新的非病毒交付
在体外和体内向IVD运送遗传货物的系统。第一个特定目的(R61阶段1 AIM 1)聚焦
关于转录因子EV或TNT递送对解剖的人核细胞和
在体外检查ECM和分解代谢,炎症和疼痛标记的变化。第二个目标(R61)
第1阶段目标2)研究小鼠IVD穿刺中转录因子的EV或TNT递送的影响
DBP评估模型的椎间盘结构/功能,疼痛,认知和细胞毒性的变化。这些研究
既重要又高度创新,因为它们结合了一个独特的医学多学科团队
以及兽医临床医生,脊柱生物学家,神经科学家,生物医学工程师和生物统计学家
询问这些新颖概念和技术来治疗DBP的使用。更广泛的影响
提案和向R33部分的过渡涉及评估该策略的临床相关策略
在患有DBP的患者狗中,发育于发育DBP的软骨型狗,然后进行临床试验。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Non-viral Gene Delivery Methods for Bone and Joints.
- DOI:10.3389/fbioe.2020.598466
- 发表时间:2020
- 期刊:
- 影响因子:5.7
- 作者:Gantenbein B;Tang S;Guerrero J;Higuita-Castro N;Salazar-Puerta AI;Croft AS;Gazdhar A;Purmessur D
- 通讯作者:Purmessur D
Non-viral reprogramming of human nucleus pulposus cells with FOXF1 via extracellular vesicle delivery: an in vitro and in vivo study.
- DOI:10.22203/ecm.v041a07
- 发表时间:2021-01-19
- 期刊:
- 影响因子:3.1
- 作者:Tang S;Salazar-Puerta A;Richards J;Khan S;Hoyland JA;Gallego-Perez D;Walter B;Higuita-Castro N;Purmessur D
- 通讯作者:Purmessur D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Natalia Higuita-Castro其他文献
Natalia Higuita-Castro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Natalia Higuita-Castro', 18)}}的其他基金
Novel non-viral reprogramming strategies to treat Discogenic back pain via engineered extracellular vesicles
通过工程细胞外囊泡治疗椎间盘源性背痛的新型非病毒重编程策略
- 批准号:
10446202 - 财政年份:2022
- 资助金额:
$ 36.77万 - 项目类别:
Novel non-viral reprogramming strategies to treat Discogenic back pain via engineered extracellular vesicles
通过工程细胞外囊泡治疗椎间盘源性背痛的新型非病毒重编程策略
- 批准号:
10606527 - 财政年份:2022
- 资助金额:
$ 36.77万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Early life stress impacts molecular and network properties that bias the recruitment of pro-stress BLA circuits
早期生活压力会影响分子和网络特性,从而影响促压力 BLA 回路的募集
- 批准号:
10820820 - 财政年份:2023
- 资助金额:
$ 36.77万 - 项目类别:
Feasibility of a care team-focused action plan to improve quality of care for children and adolescents with inflammatory bowel disease
以护理团队为重点的行动计划的可行性,以提高炎症性肠病儿童和青少年的护理质量
- 批准号:
10724900 - 财政年份:2023
- 资助金额:
$ 36.77万 - 项目类别:
The Impact of Early Life Stress On Amygdala Circuitry And Chronic Excessive Aggression
早期生活压力对杏仁核回路和慢性过度攻击性的影响
- 批准号:
10729031 - 财政年份:2023
- 资助金额:
$ 36.77万 - 项目类别:
MULTIsite feasibility of MUSIc therapy to address Quality Of Life in Sickle cell disease (MULTI-MUSIQOLS)
MUSIC 疗法解决镰状细胞病生活质量问题的多部位可行性 (MULTI-MUSIQOLS)
- 批准号:
10728452 - 财政年份:2023
- 资助金额:
$ 36.77万 - 项目类别:
The impact of changes in social determinants of health on adolescent and young adult mental health during the COVID-19 pandemic: A longitudinal study of the Asenze cohort in South Africa
COVID-19 大流行期间健康社会决定因素的变化对青少年和年轻人心理健康的影响:南非 Asenze 队列的纵向研究
- 批准号:
10755168 - 财政年份:2023
- 资助金额:
$ 36.77万 - 项目类别: