Determination of optimal antisense oligonucleotide chemistry for efficient and safe splicing modulation in T cells

确定最佳反义寡核苷酸化学,以实现 T 细胞中高效、安全的剪接调节

基本信息

项目摘要

PROJECT SUMMARY Multiple Sclerosis (MS) is the most common neurological disease of early adulthood and is mediated by autoimmune mechanisms that lead to demyelination and neuronal damage in the central nervous system, resulting in progressive neurological dysfunction. There is no cure for the disease and current treatments focus on preventing future immunological attacks, mainly by suppressing the immune system. This leads to adverse side effects that are often severe or fatal. Accordingly, there is a clear unmet need for the development of effective and well-tolerated therapies to arrest MS development. This has been challenging because MS has numerous etiologies and the molecular mechanisms underlying these etiologies are not well understood. We uncovered the molecular underpinnings of an MS etiology and hope this knowledge will translate into a targeted therapy for MS. This specific etiology results from up-regulation of the soluble form of the Interleukin- 7 Receptor (sIL7R), which has been shown to aggravate the progression and severity of the disease in the Experimental Autoimmune Encephalomyelitis (EAE) mouse model of MS, and to be elevated in patients of several autoimmune diseases including MS, Type I diabetes, Rheumatoid arthritis and Systemic lupus erythematosus. Given that sIL7R is produced by abnormal exclusion of exon 6 from IL7R pre-mRNAs, we developed a novel biologic drug, a splicing-modulating antisense oligonucleotide (SM-ASO; IL7R-005) that corrects this abnormal splicing and restores normal expression of IL7R protein isoforms. IL7R-005 represents a major improvement over current MS therapies in that by correcting IL7R splicing, it diminishes expression of the pathogenic sIL7R isoform, without affecting the function of the membrane-bound IL7R (mIL7R), which is vital for proper immune function, thereby avoiding the adverse immunosuppressive effects of current drugs. T cells are the major producers of sIL7R in humans, and thus to reduce sIL7R levels, IL7R-005 needs to be delivered into T cells in vivo. Although SM-ASOs have been shown to modulate RNA splicing decisions in many tissues in vivo (e.g. FDA-approved Spinraza), the delivery and functionality of SM-ASOs in T cells have not been thoroughly examined, and represents the major hurdle to expand the use of SM-ASOs for treatment of immunological disorders and the development of novel immunotherapies. Here, we address this obstacle by conducting an in-depth, side-by-side analysis of the influence of diverse chemical modifications on the efficiency of SM-ASOs in primary T cells and their potential toxic effects in relevant cell models. This is critical as the chemical modifications of the SM-ASOs could influence their pharmacological properties (e.g., cellular uptake) differentially across cell-types, and thus define the potency of SM-ASOs in a cell-type specific matter. The chemical modifications of the SM-ASOs also dictate potential harmful effects, such as hepatic or renal toxicities. Therefore, this in-depth analysis will enable selection of the chemistry with the optimal therapeutic index (i.e., high potency, low toxicity) for efficient splicing modulation in T cells.
项目摘要 多发性硬化症(MS)是成年早期最常见的神经系统疾病,由 自身免疫机制导致中枢神经系统中脱髓鞘和神经元损害, 导致进行性神经功能障碍。无法治愈该疾病,目前的治疗重点 在预防未来的免疫攻击方面,主要是通过抑制免疫系统。这导致不利 副作用通常是严重或致命的。因此,对于开发的明显未满足 有效且耐受良好的疗法可阻止MS开发。这很具有挑战性,因为MS有 这些病因的许多病因和分子机制尚不清楚。我们 发现了MS病因的分子基础,并希望这些知识将转化为 针对MS的靶向疗法。这种特定的病因是由白介素 - 可溶性形式的上调引起的 7受体(SIL7R),已证明会加剧该疾病在疾病中的进展和严重程度 MS的实验性自身免疫性脑脊髓炎(EAE)小鼠模型,并在患者中升高 几种自身免疫性疾病,包括MS,I型糖尿病,类风湿关节炎和全身性狼疮 红斑。鉴于SIL7R是通过异常排除外显子6从IL7R PREMRNA中产生的,我们 开发了一种新型的生物学药物,一种剪接调节反义寡核苷酸(SM-ASO; IL7R-005) 纠正这种异常剪接并恢复IL7R蛋白同工型的正常表达。 IL7R-005代表 对当前MS疗法的重大改进是通过校正IL7R剪接,它减少了 致病SIL7R同工型,不影响膜结合的IL7R(MIL7R)的功能,这是 对于适当的免疫功能至关重要,从而避免了当前药物的不良免疫抑制作用。 t 细胞是人类SIL7R的主要生产国,因此为了降低SIL7R水平,IL7R-005必须为 在体内递送到T细胞中。尽管已显示SM-ASO在调节RNA剪接决策中 许多组织在体内(例如FDA批准的Spinraza),T细胞中SM-ASO的传递和功能具有 未经彻底检查,代表扩大SM-ASO用于治疗的主要障碍 免疫障碍和新型免疫疗法的发展。在这里,我们通过 对各种化学修改对该影响的影响进行深入的,并排分析 原代T细胞中SM-ASO的效率及其在相关细胞模型中的潜在毒性作用。这很关键 由于SM-ASO的化学修饰可能影响其药理特性(例如,细胞 跨细胞类型的摄取),从而定义了细胞类型特定物质中SM-ASO的效力。 SM-ASO的化学修饰还决定了潜在的有害作用,例如肝或肾脏 毒性。因此,这种深入的分析将能够通过最佳治疗方法选择化学 指数(即高效力,低毒性),用于T细胞中有效的剪接调制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gaddiel Galarza-Munoz其他文献

Gaddiel Galarza-Munoz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gaddiel Galarza-Munoz', 18)}}的其他基金

Strategy for specific delivery of antisense oligonucleotides to T cells
将反义寡核苷酸特异性递送至 T 细胞的策略
  • 批准号:
    10547347
  • 财政年份:
    2022
  • 资助金额:
    $ 28.37万
  • 项目类别:
Development of antisense oligonucleotides that enhance sIL7R as novel cancer immunotherapy
开发增强 sIL7R 的反义寡核苷酸作为新型癌症免疫疗法
  • 批准号:
    10324489
  • 财政年份:
    2021
  • 资助金额:
    $ 28.37万
  • 项目类别:
Development of a novel accurate therapy for multiple sclerosis
开发一种针对多发性硬化症的新型精确疗法
  • 批准号:
    10384985
  • 财政年份:
    2019
  • 资助金额:
    $ 28.37万
  • 项目类别:
Development of a novel accurate therapy for multiple sclerosis
开发一种针对多发性硬化症的新型精确疗法
  • 批准号:
    10687987
  • 财政年份:
    2019
  • 资助金额:
    $ 28.37万
  • 项目类别:

相似国自然基金

肾—骨应答调控骨骼VDR/RXR对糖尿病肾病动物模型FGF23分泌的影响及中药的干预作用
  • 批准号:
    82074395
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于细胞自噬调控的苦参碱对多囊肾小鼠动物模型肾囊肿形成的影响和机制研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
NRSF表达水平对抑郁模型小鼠行为的影响及其分子机制研究
  • 批准号:
    81801333
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
靶向诱导merlin/p53协同性亚细胞穿梭对听神经瘤在体生长的影响
  • 批准号:
    81800898
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
伪狂犬病病毒激活三叉神经节细胞对其NF-кB和PI3K/Akt信号转导通路影响的分子机制研究
  • 批准号:
    31860716
  • 批准年份:
    2018
  • 资助金额:
    39.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
  • 批准号:
    10595404
  • 财政年份:
    2023
  • 资助金额:
    $ 28.37万
  • 项目类别:
Dravet Syndrome Anti-Epileptic Control by Targeting GIRK Channels
通过针对 GIRK 通道进行 Dravet 综合征抗癫痫控制
  • 批准号:
    10638439
  • 财政年份:
    2023
  • 资助金额:
    $ 28.37万
  • 项目类别:
Novel application of pharmaceutical AMD3100 to reduce risk in opioid use disorder: investigations of a causal relationship between CXCR4 expression and addiction vulnerability
药物 AMD3100 降低阿片类药物使用障碍风险的新应用:CXCR4 表达与成瘾脆弱性之间因果关系的研究
  • 批准号:
    10678062
  • 财政年份:
    2023
  • 资助金额:
    $ 28.37万
  • 项目类别:
Mechanisms of Metal Ion Homeostasis of Oral Streptococci
口腔链球菌金属离子稳态机制
  • 批准号:
    10680956
  • 财政年份:
    2023
  • 资助金额:
    $ 28.37万
  • 项目类别:
Design and testing of a novel circumesophageal cuff for chronic bilateral subdiaphragmatic vagal nerve stimulation (sVNS)
用于慢性双侧膈下迷走神经刺激(sVNS)的新型环食管套囊的设计和测试
  • 批准号:
    10702126
  • 财政年份:
    2023
  • 资助金额:
    $ 28.37万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了