Determination of optimal antisense oligonucleotide chemistry for efficient and safe splicing modulation in T cells
确定最佳反义寡核苷酸化学,以实现 T 细胞中高效、安全的剪接调节
基本信息
- 批准号:9907140
- 负责人:
- 金额:$ 28.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-05 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAnimal ModelAntisense OligonucleotidesAutoimmune DiseasesAutoimmune ProcessAwardBiologicalBiological AssayCallithrixCell modelCellsChemicalsChemistryClinicClinical ResearchCognitiveComplexCultured CellsDemyelinationsDevelopmentDiagnosisDiseaseEmotionalEtiologyExclusionExhibitsExonsExperimental Autoimmune EncephalomyelitisFDA approvedFruitFundingFutureGenerationsGeneticGenetic DiseasesGoalsGrantHepaticHepatotoxicityHumanIL7R geneImmuneImmune System DiseasesImmune systemImmunologicsImmunomodulatorsImmunosuppressionImmunotherapyInsulin-Dependent Diabetes MellitusInterleukin 7 ReceptorInvestigationKidneyKnowledgeLeadMeasuresMediatingMedicalMembraneModelingModificationMolecularMultiple SclerosisNeuraxisNeurologic DysfunctionsNeuronsPathogenicityPatientsPharmaceutical PreparationsPharmacologyPhasePropertyProtein IsoformsRNA SplicingResearchRheumatoid ArthritisSafetySensorySeverity of illnessSideSmall Business Innovation Research GrantSmall Business Technology Transfer ResearchSystemic Lupus ErythematosusT-LymphocyteTestingTherapeuticTherapeutic IndexTherapeutic InterventionTissuesToxic effectToxicologyTranslatingUp-RegulationWorkbasecell typeemerging adultimmune functionimprovedin vivoin vivo evaluationmRNA Precursormotor impairmentmouse modelnephrotoxicitynervous system disorderneuron lossnovelpersonalized medicinepreclinical studypreventside effectsuccesstargeted treatmenttooluptake
项目摘要
PROJECT SUMMARY
Multiple Sclerosis (MS) is the most common neurological disease of early adulthood and is mediated by
autoimmune mechanisms that lead to demyelination and neuronal damage in the central nervous system,
resulting in progressive neurological dysfunction. There is no cure for the disease and current treatments focus
on preventing future immunological attacks, mainly by suppressing the immune system. This leads to adverse
side effects that are often severe or fatal. Accordingly, there is a clear unmet need for the development of
effective and well-tolerated therapies to arrest MS development. This has been challenging because MS has
numerous etiologies and the molecular mechanisms underlying these etiologies are not well understood. We
uncovered the molecular underpinnings of an MS etiology and hope this knowledge will translate into a
targeted therapy for MS. This specific etiology results from up-regulation of the soluble form of the Interleukin-
7 Receptor (sIL7R), which has been shown to aggravate the progression and severity of the disease in the
Experimental Autoimmune Encephalomyelitis (EAE) mouse model of MS, and to be elevated in patients of
several autoimmune diseases including MS, Type I diabetes, Rheumatoid arthritis and Systemic lupus
erythematosus. Given that sIL7R is produced by abnormal exclusion of exon 6 from IL7R pre-mRNAs, we
developed a novel biologic drug, a splicing-modulating antisense oligonucleotide (SM-ASO; IL7R-005) that
corrects this abnormal splicing and restores normal expression of IL7R protein isoforms. IL7R-005 represents
a major improvement over current MS therapies in that by correcting IL7R splicing, it diminishes expression of
the pathogenic sIL7R isoform, without affecting the function of the membrane-bound IL7R (mIL7R), which is
vital for proper immune function, thereby avoiding the adverse immunosuppressive effects of current drugs. T
cells are the major producers of sIL7R in humans, and thus to reduce sIL7R levels, IL7R-005 needs to be
delivered into T cells in vivo. Although SM-ASOs have been shown to modulate RNA splicing decisions in
many tissues in vivo (e.g. FDA-approved Spinraza), the delivery and functionality of SM-ASOs in T cells have
not been thoroughly examined, and represents the major hurdle to expand the use of SM-ASOs for treatment
of immunological disorders and the development of novel immunotherapies. Here, we address this obstacle by
conducting an in-depth, side-by-side analysis of the influence of diverse chemical modifications on the
efficiency of SM-ASOs in primary T cells and their potential toxic effects in relevant cell models. This is critical
as the chemical modifications of the SM-ASOs could influence their pharmacological properties (e.g., cellular
uptake) differentially across cell-types, and thus define the potency of SM-ASOs in a cell-type specific matter.
The chemical modifications of the SM-ASOs also dictate potential harmful effects, such as hepatic or renal
toxicities. Therefore, this in-depth analysis will enable selection of the chemistry with the optimal therapeutic
index (i.e., high potency, low toxicity) for efficient splicing modulation in T cells.
项目概要
多发性硬化症 (MS) 是成年早期最常见的神经系统疾病,由
导致中枢神经系统脱髓鞘和神经元损伤的自身免疫机制,
导致进行性神经功能障碍。该疾病无法治愈,目前的治疗重点
主要通过抑制免疫系统来预防未来的免疫攻击。这会导致不利的
副作用通常是严重或致命的。因此,显然存在未满足的发展需求
有效且耐受性良好的疗法可阻止多发性硬化症的发展。这一直具有挑战性,因为 MS 已经
许多病因学以及这些病因学背后的分子机制尚不清楚。我们
揭示了多发性硬化症病因学的分子基础,并希望这些知识能够转化为
MS 的靶向治疗。这种特定的病因是由于可溶性白细胞介素的上调所致。
7 受体 (sIL7R),已被证明会加剧疾病的进展和严重程度
多发性硬化症的实验性自身免疫性脑脊髓炎 (EAE) 小鼠模型,并在以下患者中升高
多种自身免疫性疾病,包括多发性硬化症、I 型糖尿病、类风湿性关节炎和系统性狼疮
红斑狼疮。鉴于 sIL7R 是通过从 IL7R 前体 mRNA 中异常排除外显子 6 产生的,我们
开发了一种新型生物药物,一种剪接调节反义寡核苷酸(SM-ASO;IL7R-005),
纠正这种异常剪接并恢复 IL7R 蛋白亚型的正常表达。 IL7R-005代表
与目前的多发性硬化症疗法相比,这是一个重大改进,通过纠正 IL7R 剪接,它可以减少
致病性 sIL7R 亚型,而不影响膜结合 IL7R (mIL7R) 的功能,即
对于正常的免疫功能至关重要,从而避免当前药物的不良免疫抑制作用。时间
细胞是人类 sIL7R 的主要生产者,因此为了降低 sIL7R 水平,需要将 IL7R-005
递送至体内 T 细胞。尽管 SM-ASO 已被证明可以调节 RNA 剪接决策
SM-ASO 在体内的许多组织中(例如 FDA 批准的 Spinraza),T 细胞中 SM-ASO 的递送和功能
尚未经过彻底检查,是扩大 SM-ASO 治疗用途的主要障碍
免疫疾病的研究和新型免疫疗法的开发。在这里,我们通过以下方式解决这个障碍
对各种化学修饰对
SM-ASO 在原代 T 细胞中的效率及其在相关细胞模型中的潜在毒性作用。这很关键
因为 SM-ASO 的化学修饰可能会影响其药理学特性(例如,细胞
吸收)在细胞类型之间存在差异,从而定义了 SM-ASO 在细胞类型特定物质中的效力。
SM-ASO 的化学修饰也决定了潜在的有害影响,例如肝或肾
毒性。因此,这种深入的分析将能够选择具有最佳治疗效果的化学物质
T 细胞中有效剪接调节的指数(即高效、低毒)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gaddiel Galarza-Munoz其他文献
Gaddiel Galarza-Munoz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gaddiel Galarza-Munoz', 18)}}的其他基金
Strategy for specific delivery of antisense oligonucleotides to T cells
将反义寡核苷酸特异性递送至 T 细胞的策略
- 批准号:
10547347 - 财政年份:2022
- 资助金额:
$ 28.37万 - 项目类别:
Development of antisense oligonucleotides that enhance sIL7R as novel cancer immunotherapy
开发增强 sIL7R 的反义寡核苷酸作为新型癌症免疫疗法
- 批准号:
10324489 - 财政年份:2021
- 资助金额:
$ 28.37万 - 项目类别:
Development of a novel accurate therapy for multiple sclerosis
开发一种针对多发性硬化症的新型精确疗法
- 批准号:
10384985 - 财政年份:2019
- 资助金额:
$ 28.37万 - 项目类别:
Development of a novel accurate therapy for multiple sclerosis
开发一种针对多发性硬化症的新型精确疗法
- 批准号:
10687987 - 财政年份:2019
- 资助金额:
$ 28.37万 - 项目类别:
相似国自然基金
肾—骨应答调控骨骼VDR/RXR对糖尿病肾病动物模型FGF23分泌的影响及中药的干预作用
- 批准号:82074395
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
基于细胞自噬调控的苦参碱对多囊肾小鼠动物模型肾囊肿形成的影响和机制研究
- 批准号:
- 批准年份:2019
- 资助金额:33 万元
- 项目类别:地区科学基金项目
靶向诱导merlin/p53协同性亚细胞穿梭对听神经瘤在体生长的影响
- 批准号:81800898
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
伪狂犬病病毒激活三叉神经节细胞对其NF-кB和PI3K/Akt信号转导通路影响的分子机制研究
- 批准号:31860716
- 批准年份:2018
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
基于中枢胰岛素抵抗探讨自噬失调对肾虚阿尔茨海默的影响及机制研究
- 批准号:81803854
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 28.37万 - 项目类别:
Dravet Syndrome Anti-Epileptic Control by Targeting GIRK Channels
通过针对 GIRK 通道进行 Dravet 综合征抗癫痫控制
- 批准号:
10638439 - 财政年份:2023
- 资助金额:
$ 28.37万 - 项目类别:
Novel application of pharmaceutical AMD3100 to reduce risk in opioid use disorder: investigations of a causal relationship between CXCR4 expression and addiction vulnerability
药物 AMD3100 降低阿片类药物使用障碍风险的新应用:CXCR4 表达与成瘾脆弱性之间因果关系的研究
- 批准号:
10678062 - 财政年份:2023
- 资助金额:
$ 28.37万 - 项目类别:
Mechanisms of Metal Ion Homeostasis of Oral Streptococci
口腔链球菌金属离子稳态机制
- 批准号:
10680956 - 财政年份:2023
- 资助金额:
$ 28.37万 - 项目类别:
Design and testing of a novel circumesophageal cuff for chronic bilateral subdiaphragmatic vagal nerve stimulation (sVNS)
用于慢性双侧膈下迷走神经刺激(sVNS)的新型环食管套囊的设计和测试
- 批准号:
10702126 - 财政年份:2023
- 资助金额:
$ 28.37万 - 项目类别: