Mechanistic Target of Rapamycin Pathways in Metabolism and Energy Expenditure
雷帕霉素代谢和能量消耗途径的机制目标
基本信息
- 批准号:9904610
- 负责人:
- 金额:$ 48.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-05 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AKT1 geneAKT2 geneATP Citrate (pro-S)-LyaseAcetatesAcetyl Coenzyme AAcetylationAdipocytesAdipose tissueBiochemicalBrown FatCardiovascular DiseasesCell LineCell membraneCellsChronic DiseaseCoenzyme A LigasesComplexDataDeacetylaseDeacetylationDietDiseaseEnergy MetabolismEpidemicEpigenetic ProcessEquilibriumFOXO1A geneFRAP1 geneFamily memberFatty AcidsFatty LiverFatty acid glycerol estersFundingGene ExpressionGenetic ModelsGenetic ProgrammingGenetic TranscriptionGenetically Engineered MouseGoalsGrantHealthcare SystemsHigh Fat DietHistone AcetylationHomeostasisImpairmentIn VitroInsulin ResistanceLinkLipidsLipolysisLiver diseasesMalignant NeoplasmsMetabolicMetabolic ControlMetabolic DiseasesMetabolic PathwayMetabolismModelingMolecularNon-Insulin-Dependent Diabetes MellitusNutrientNutritionalObesityOrganismOvernutritionOverweightPDPK1 genePathway interactionsPharmacologyPhenotypePhosphorylationPhosphotransferasesPrevalenceProductionProteomicsProto-Oncogene Proteins c-aktPublishingRegulationResearchRisk FactorsRoleSecond Messenger SystemsSignal PathwaySignal TransductionSignal Transduction PathwayTestingTherapeuticThermogenesisTissuesTriglyceridesUnited StatesWorkadipocyte differentiationbasedetection of nutrientdiabetogenicenergy balancefatty acid oxidationfeedingflexibilityin vivoinsulin sensitivityinterdisciplinary approachknowledge baselipid biosynthesislipid metabolismmetabolomicsnovelphosphoproteomicspreventprogramsrecruitthermal stresstranscription factor
项目摘要
The long-term goal of this proposal is to elucidate mechanisms that regulate energy balance. Here, we investigate the regulation of lipid handling and energy homeostasis in adipose tissue with a specific focus on elucidating how signal transduction pathways intersect with metabolic pathways to control thermogenesis and insulin sensitivity. Healthy adipocytes dynamically switch between anabolic and catabolic lipid metabolism upon fluctuations in systemic nutrient availability and thermal stress to support the organism's energetic demands. Maintaining this metabolic flexibility depends upon signals that tightly coordinate de novo fatty acid and triacylglycerol synthesis with lipolysis and fatty acid oxidation. For unclear reasons, overweight or obesity impairs this metabolic flexibility and leads to chronic diseases such as insulin resistance, T2DM, fatty liver disease, cardiovascular disease, and certain cancers. The long-term goal of this research is to understand the molecular basis of how adipocytes sense and respond to nutrients to control energy balance, and how over-nutrition reprograms these signaling circuits to cause disease. The specific objective of this proposal is to elucidate the mechanisms by which the mechanistic target of rapamycin complex 2 (mTORC2), which we previously showed is a key regulator of adipocyte lipid metabolism, links systemic nutrient availability with intracellular metabolic control. To test this, we are taking a multidisciplinary approach utilizing genetically engineered mice, primary cell lines, and pharmacological agents in combination with state-of-the-art proteomics and metabolite profiling to delineate the downstream metabolic circuits under direct and indirect mTORC2 control that are relevant to adipose tissue related diseases. Our previous work on this project revealed that inhibiting mTORC2 in brown adipocytes enhances diet-induced thermogenesis, that inhibiting mTORC2 in white adipose tissue causes severe insulin resistance, that ChREBP is a novel mTORC2 effector that regulates de novo lipogenesis downstream of mTORC2, and that the consequences of mTORC2 loss in brown and white fat are phenotypically similar to the effects of a diabetogenic high fat diet on these tissues. Building upon this knowledge base, we will continue elucidating the mechanisms by which mTORC2 programs adipocyte metabolism in Aim 1, investigate the mechanistic similarities and potential connection between mTORC2 loss and high fat diet on adipocyte metabolism in Aim 2, and investigate a novel transcriptional circuit under direct mTORC2 control that regulates adipocyte lipid metabolism in Aim 3. Elucidating how nutrient-sensing signaling pathways like the mTOR pathway link nutritional signals to metabolic regulation in adipocytes has important implications for advancing therapies to treat obesity, type 2 diabetes, and related metabolic diseases.
该提案的长期目标是阐明调节能量平衡的机制。在这里,我们研究了脂质组织中脂质处理和能量稳态的调节,其特定重点是阐明信号转导途径如何与代谢途径相交以控制热生成和胰岛素敏感性。健康的脂肪细胞在全身营养可利用性和热应力波动时动态切换在合成代谢和分解代谢脂质代谢之间,以支持有机体的能量需求。保持这种代谢柔韧性取决于信号表明,与脂解和脂肪解析和脂肪酸氧化紧密坐标的脂肪酸和三酰基甘油合成。由于不明确的原因,超重或肥胖会损害这种代谢柔韧性,并导致慢性疾病,例如胰岛素抵抗,T2DM,脂肪肝病,心血管疾病和某些癌症。这项研究的长期目标是了解脂肪细胞如何感知并响应营养以控制能量平衡的分子基础,以及如何过度努力重新编程这些信号通路引起疾病。 该提案的具体目的是阐明雷帕霉素复合物2(MTORC2)的机理靶标的机制,我们先前表明,这是脂肪细胞脂质代谢的关键调节剂,将系统性营养素可用性与细胞内代谢性控制联系起来。为此,我们正在采用多学科的方法,利用基因工程小鼠,原代细胞系和药理学剂与最先进的蛋白质组学和代谢物分析结合使用,以划定与直接和间接的MTORC2控制下的下游代谢回路相关的下游代谢回路,与适应性相关的疾病相关。我们先前在该项目上的工作表明,棕色脂肪细胞中抑制MTORC2增强了饮食诱导的热发生,抑制白色脂肪组织中MTORC2会引起严重的胰岛素耐药性,Chrebp是一种新型的MTORC2效应,它调节了Novo Lipogens and de Novo lipogens and stream and the theremity of Mtorc2,以及该现有的现有现象。类似于糖尿病性高脂饮食对这些组织的影响。 Building upon this knowledge base, we will continue elucidating the mechanisms by which mTORC2 programs adipocyte metabolism in Aim 1, investigate the mechanistic similarities and potential connection between mTORC2 loss and high fat diet on adipocyte metabolism in Aim 2, and investigate a novel transcriptional circuit under direct mTORC2 control that regulates adipocyte lipid metabolism in Aim 3. Elucidating how营养感应信号通路(如MTOR途径)将营养信号与脂肪细胞中的代谢调节联系起来对预测治疗肥胖症,2型糖尿病和相关代谢疾病的疗法具有重要意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David A Guertin其他文献
David A Guertin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David A Guertin', 18)}}的其他基金
Quantitative and functional analysis of brown fat nutrient fluxes in vivo and its role in organ metabolite exchange
体内棕色脂肪营养通量的定量和功能分析及其在器官代谢物交换中的作用
- 批准号:
10624850 - 财政年份:2021
- 资助金额:
$ 48.95万 - 项目类别:
Quantitative and functional analysis of brown fat nutrient fluxes in vivo and its role in organ metabolite exchange
体内棕色脂肪营养通量的定量和功能分析及其在器官代谢物交换中的作用
- 批准号:
10316282 - 财政年份:2021
- 资助金额:
$ 48.95万 - 项目类别:
Quantitative and functional analysis of brown fat nutrient fluxes in vivo and its role in organ metabolite exchange
体内棕色脂肪营养通量的定量和功能分析及其在器官代谢物交换中的作用
- 批准号:
10461885 - 财政年份:2021
- 资助金额:
$ 48.95万 - 项目类别:
Role of acetyl-CoA metabolism in the response to dietary and thermal stress
乙酰辅酶A代谢在饮食和热应激反应中的作用
- 批准号:
10909411 - 财政年份:2018
- 资助金额:
$ 48.95万 - 项目类别:
Acetyl-CoA metabolism and nutrient sensing in adipocytes
脂肪细胞中的乙酰辅酶A代谢和营养感应
- 批准号:
10304153 - 财政年份:2018
- 资助金额:
$ 48.95万 - 项目类别:
Mechanistic Target of Rapamycin Pathways in Metabolism and Energy Expenditure
雷帕霉素代谢和能量消耗途径的机制目标
- 批准号:
10615070 - 财政年份:2013
- 资助金额:
$ 48.95万 - 项目类别:
Mechanistic Target of Rapamycin Pathways in Metabolism and Energy Expenditure
雷帕霉素代谢和能量消耗途径的机制目标
- 批准号:
10398039 - 财政年份:2013
- 资助金额:
$ 48.95万 - 项目类别:
Mechanistic Target of Rapamycin Pathways in Metabolism and Energy Expenditure
雷帕霉素代谢和能量消耗途径的机制目标
- 批准号:
8575320 - 财政年份:2013
- 资助金额:
$ 48.95万 - 项目类别:
Mechanistic Target of Rapamycin Pathways in Metabolism and Energy Expenditure
雷帕霉素代谢和能量消耗途径的机制目标
- 批准号:
8695338 - 财政年份:2013
- 资助金额:
$ 48.95万 - 项目类别:
Mechanistic Target of Rapamycin Pathways in Metabolism and Energy Expenditure
雷帕霉素代谢和能量消耗途径的机制目标
- 批准号:
8881160 - 财政年份:2013
- 资助金额:
$ 48.95万 - 项目类别:
相似国自然基金
NAT10通过mRNA ac4C修饰促进AKT2与EED翻译介导下游基因表达在膀胱癌中的分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
NAT10通过mRNA ac4C修饰促进AKT2与EED翻译介导下游基因表达在膀胱癌中的分子机制研究
- 批准号:82273132
- 批准年份:2022
- 资助金额:52.00 万元
- 项目类别:面上项目
应用子宫特异Akt2基因敲除小鼠探讨启宫丸改善PCOS子宫胰岛素抵抗的机制
- 批准号:81804137
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
卵巢癌耐药相关新基因KA通过AKT2/GSK-3β/MAD2信号通路调控细胞纺锤体检测点功能参与紫杉醇耐药机理研究
- 批准号:81000979
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Obscurin-Deficient Breast Epithelia Generate Secreted Factors that Prime Lung Vascular Smooth Muscle Cell Pre-metastatic Microenvironment Formation
暗蛋白缺陷的乳腺上皮细胞产生分泌因子,促进肺血管平滑肌细胞转移前微环境的形成
- 批准号:
10749467 - 财政年份:2023
- 资助金额:
$ 48.95万 - 项目类别:
Development of a mouse model of brown fat dystrophia
棕色脂肪营养不良小鼠模型的建立
- 批准号:
10450253 - 财政年份:2022
- 资助金额:
$ 48.95万 - 项目类别:
Development of a mouse model of brown fat dystrophia
棕色脂肪营养不良小鼠模型的建立
- 批准号:
10590670 - 财政年份:2022
- 资助金额:
$ 48.95万 - 项目类别:
Characterization of ILEI/LIFR Axis-induced Intracellular Signaling
ILEI/LIFR 轴诱导的细胞内信号传导的表征
- 批准号:
10331812 - 财政年份:2021
- 资助金额:
$ 48.95万 - 项目类别: