Network Dysfunction and Neuromodulation following TBI
TBI 后的网络功能障碍和神经调节
基本信息
- 批准号:9903464
- 负责人:
- 金额:$ 35.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnimal ModelAreaBehaviorBrainBrain regionCellsClinicalClinical TreatmentCodeCognitionCognitiveCognitive deficitsCommunicationDataDevelopmentDiffuseDiffuse Axonal InjuryElectrodesFire - disastersFrequenciesFutureGoalsHippocampus (Brain)HumanInjuryKnowledgeLeadLocationMedialMemoryMemory DisordersMemory impairmentMissionModelingNational Institute of Neurological Disorders and StrokeNeuronsOutputPopulationPrefrontal CortexPublic HealthRattusReportingResearchRoleSeriesShort-Term MemorySignal TransductionSpecificityStructureSymptomsTBI treatmentTechnologyTestingTranslatingTraumatic Brain Injuryawakeaxon injurybaseclinically relevantcognitive functioncommon treatmentdesigneffective therapyentorhinal cortexexperimental studyfunctional restorationmemory encodingmemory recallmemory retrievalmild traumatic brain injurynetwork dysfunctionneuron lossneurophysiologyneuroregulationpersistent symptompre-clinicalresponserestorationspatial memorytherapy designtherapy developmenttreatment strategy
项目摘要
Summary
Although memory dysfunction is a frequent symptom of traumatic brain injury (TBI), there are currently no
effective treatments available for this persistent deficit. In addition, the neurophysiological basis of this
disruption remains unknown, making rational treatment design difficult. Disruption of oscillations in memory
encoding structures have been demonstrated in animal models of TBI, with loss of hippocampal theta a
prominent finding. Restoration of theta using neuromodulation can also restore aspects of memory function in
the hippocampus, suggesting that neurons in the hippocampus are still functional, but that coordination
between them has been lost along with this organizing signal. New advances in electrode technology can
reveal how encoding in the HC is changed post injury, how multiple neurons interact with oscillations, and how
the decrease in HC theta has affected cells that use it to encode for spatial memory. The overall objective of
the current application is to determine how the coding of memory in hippocampal and associated circuitry is
disrupted following TBI, and how theta neuromodulation restores hippocampal function. Our central hypothesis
is that TBI disrupts communication within the larger hippocampal network, including oscillatory interactions
required for encoding and recall of memory in these connected regions. This hypothesis is based in part on
our preliminary data demonstrating that neurons in the hippocampus do not properly fire synchronously with
oscillations following injury. To test the above hypothesis, we will first determine the mechanism of theta
disruption in the hippocampus following diffuse TBI and its effect on neuronal behavior. We hypothesize that
axonal injury between theta generating structures leads to a loss of oscillatory organization in the
hippocampus, and a compensatory response in CA1 neurons affects synchronization to theta. TBI may also
lead to disruption in the oscillatory communication in the wider hippocampal network, including medial
prefrontal cortex (mPFC), leading to spatial working memory dysfunction. We will therefore quantify disruption
of neuronal coding and oscillations in this network in awake behaving rats following TBI, and determine the
mechanism of neuromodulatory restoration of spatial memory. We will further test this hypothesis in a clinically
relevant large animal model of mild TBI that produces diffuse axonal injury to determine whether connectivity
disruption is sufficient to affect coordinated neuronal activity in the hippocampal-mPFC memory network. The
proposed research will provide the first detailed analysis of disrupted neuronal coding and oscillatory
interactions between brain regions underlying memory following TBI and their relationship to axonal injury.
These experiments will also identify the effect of neuromodulation on these networks, leading to crucial
mechanisms that can be translated in the future to preclinical and clinical TBI treatments. Identification of the
mechanisms of neuronal and network disruption underlying memory dysfunction will allow for the development
of targeted treatments for this common lingering cognitive deficit following TBI.
概括
尽管记忆功能障碍是创伤性脑损伤(TBI)的常见症状,但目前没有
可用于这种持续赤字的有效治疗方法。另外,这是神经生理的基础
破坏仍然未知,使理性的治疗设计变得困难。记忆中振荡的破坏
在TBI的动物模型中已经证明了编码结构,海马theta a的损失
突出的发现。使用神经调节恢复theta也可以恢复内存功能的各个方面
海马,表明海马中的神经元仍然有效,但该协调性
它们之间与这个组织信号一起丢失了。电极技术的新进步可以
揭示受伤后HC中的编码如何改变,多个神经元如何与振荡相互作用以及如何
HC Theta的减少影响了使用它来编码空间内存的单元。总体目标
当前的应用程序是确定海马和相关电路中内存的编码如何
TBI之后受到破坏,以及theta神经调节如何恢复海马功能。我们的中心假设
TBI是否破坏了较大海马网络中的通信,包括振荡互动
在这些连接区域中编码和回忆记忆所必需的。该假设部分基于
我们的初步数据表明,海马中的神经元与
受伤后的振荡。为了检验上述假设,我们将首先确定theta的机制
弥漫性TBI后海马中的破坏及其对神经元行为的影响。我们假设这一点
theta产生结构之间的轴突损伤导致振荡组织的丧失
海马和CA1神经元中的补偿性反应会影响与theta的同步。 TBI也可能
导致更广泛的海马网络中的振荡通信中断,包括内侧
前额叶皮层(MPFC),导致空间工作记忆功能障碍。因此,我们将量化破坏
在TBI之后,该网络中该网络中的神经元编码和振荡
神经调节恢复空间记忆的机制。我们将在临床上进一步检验该假设
相关的大型轻度TBI动物模型,该模型会产生弥散的轴突损伤,以确定连通性是否存在
破坏足以影响海马MPFC内存网络中协调的神经元活动。这
拟议的研究将对神经元编码和振荡的中断分析提供首次详细分析
TBI之后记忆的基础区域之间的相互作用及其与轴突损伤的关系。
这些实验还将确定神经调节对这些网络的影响,从而导致至关重要
未来可以翻译成临床前和临床TBI处理的机制。识别
神经元和网络中断的机制基础记忆功能障碍将允许开发
TBI后这种常见的挥之不去的认知赤字的有针对性治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Allen Wolf其他文献
John Allen Wolf的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Allen Wolf', 18)}}的其他基金
Chronic Focal and Diffuse Traumatic Brain Injury: Mechanisms Underlying Epileptogenesis and Progressive Dysfunction
慢性局灶性和弥漫性创伤性脑损伤:癫痫发生和进行性功能障碍的机制
- 批准号:
10710035 - 财政年份:2020
- 资助金额:
$ 35.22万 - 项目类别:
Chronic Focal and Diffuse Traumatic Brain Injury: Mechanisms Underlying Epileptogenesis and Progressive Dysfunction
慢性局灶性和弥漫性创伤性脑损伤:癫痫发生和进行性功能障碍的机制
- 批准号:
10225986 - 财政年份:2020
- 资助金额:
$ 35.22万 - 项目类别:
Chronic Focal and Diffuse Traumatic Brain Injury: Mechanisms Underlying Epileptogenesis and Progressive Dysfunction
慢性局灶性和弥漫性创伤性脑损伤:癫痫发生和进行性功能障碍的机制
- 批准号:
10490256 - 财政年份:2020
- 资助金额:
$ 35.22万 - 项目类别:
Neuromodulation as a Therapy for PTSD following Chronic TBI
神经调节作为慢性 TBI 后 PTSD 的治疗方法
- 批准号:
10454756 - 财政年份:2018
- 资助金额:
$ 35.22万 - 项目类别:
Neuromodulation as a Therapy for PTSD following Chronic TBI
神经调节作为慢性 TBI 后 PTSD 的治疗方法
- 批准号:
10116979 - 财政年份:2018
- 资助金额:
$ 35.22万 - 项目类别:
Network Dysfunction and Neuromodulation following TBI
TBI 后的网络功能障碍和神经调节
- 批准号:
10655963 - 财政年份:2017
- 资助金额:
$ 35.22万 - 项目类别:
Mechanisms of Cortico-Limbic Network Dysfunction Underlying PTSD after TBI
TBI 后导致 PTSD 的皮质边缘网络功能障碍的机制
- 批准号:
9007890 - 财政年份:2015
- 资助金额:
$ 35.22万 - 项目类别:
Mechanisms of Cortico-Limbic Network Dysfunction Underlying PTSD after TBI
TBI 后导致 PTSD 的皮质边缘网络功能障碍的机制
- 批准号:
8856874 - 财政年份:2015
- 资助金额:
$ 35.22万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
利用碱基编辑器治疗肥厚型心肌病的动物模型研究
- 批准号:82300396
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
利用小型猪模型评价动脉粥样硬化易感基因的作用
- 批准号:32370568
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
丁苯酞通过调节细胞异常自噬和凋亡来延缓脊髓性肌萎缩症动物模型脊髓运动神经元的丢失
- 批准号:82360332
- 批准年份:2023
- 资助金额:31.00 万元
- 项目类别:地区科学基金项目
APOBEC3A驱动膀胱癌发生发展的动物模型及其机制研究
- 批准号:82303057
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Childhood trauma, hippocampal function, and anhedonia among those at heightened risk for psychosis
精神病高危人群中的童年创伤、海马功能和快感缺失
- 批准号:
10825287 - 财政年份:2024
- 资助金额:
$ 35.22万 - 项目类别:
Novel application of pharmaceutical AMD3100 to reduce risk in opioid use disorder: investigations of a causal relationship between CXCR4 expression and addiction vulnerability
药物 AMD3100 降低阿片类药物使用障碍风险的新应用:CXCR4 表达与成瘾脆弱性之间因果关系的研究
- 批准号:
10678062 - 财政年份:2023
- 资助金额:
$ 35.22万 - 项目类别:
Mechanisms of Metal Ion Homeostasis of Oral Streptococci
口腔链球菌金属离子稳态机制
- 批准号:
10680956 - 财政年份:2023
- 资助金额:
$ 35.22万 - 项目类别:
Design and testing of a novel circumesophageal cuff for chronic bilateral subdiaphragmatic vagal nerve stimulation (sVNS)
用于慢性双侧膈下迷走神经刺激(sVNS)的新型环食管套囊的设计和测试
- 批准号:
10702126 - 财政年份:2023
- 资助金额:
$ 35.22万 - 项目类别:
Project 2: Informing oral nicotine pouch regulations to promote public health
项目 2:告知口服尼古丁袋法规以促进公共卫生
- 批准号:
10666068 - 财政年份:2023
- 资助金额:
$ 35.22万 - 项目类别: