Imputing single cell RNA sequencing data: Mathematical, statistical and computational challenges

估算单细胞 RNA 测序数据:数学、统计和计算挑战

基本信息

  • 批准号:
    9902859
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-23 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Novel single cell RNA sequencing (scRNA-seq) technologies can simultaneously measure the expression levels of all 30,000 genes over thousands to millions of individual cells. The analysis of scRNA-seq data has already led to fundamental advances in biology, including discovery of new cell types, detection of subtle differences between similar cells, and reconstruction of cellular developmental trajectories. Single- cell measurements involve amplification of tiny amounts of RNA and result in extremely sparse data matrices with many zeros, While some of these zeros are due to missing data (dropouts), others represent true biological inactivity. Yet, many scRNA-seq imputation methods treat all observed zero entries identically, leading to imputed matrices that often overestimate transcriptional activity. Other methods that do attempt to distinguish biological zeros from dropouts lack rigorous theoretical guarantees. The goals of this proposal are to develop models, supporting mathematical theory, and computational tools that explicitly take the existence of true biological zeros into account. Matrix imputation under this constraint involves both computational challenges as well as theoretical questions in random matrix theory and high dimensional statistics. These include rank estimation and low rank sparse matrix recovery from partially observed data, and biclustering in the presence of dropouts and zeros, We plan to develop novel approaches based on non-smooth continuous optimization, and derive accompanying statistical guarantees, We also plan to develop ensemble learning approaches that cleverly combine the outputs of multiple imputation algorithms. Finally, we hope to gain important insights regarding recovery from such data via a study of minimax rates and information lower bounds. To address these challenges, we will build on our promising preliminary results and the joint expertise of the investigators in spectral methods, high dimensional statistics, matrix analysis, numerical optimization, and genomics.
新型的单细胞RNA测序(SCRNA-SEQ)技术可以同时测量所有的表达水平 30,000个基因超过数千至数百万个单个细胞。 SCRNA-seq数据的分析已经导致 生物学的基本进步,包括发现新细胞类型,发现之间的细微差异 类似的细胞,以及细胞发育轨迹的重建。单细胞测量涉及 放大少量的RNA,并在许多零中导致非常稀疏的数据矩阵,而其中一些则导致数据矩阵 这些零是由于缺少数据(辍学)所致,其他零代表了真正的生物学不活动。但是,许多scrna-seq 插补方法对所有观察到的零条目的处理相同,导致估算的矩阵通常高估 转录活动。其他尝试区分生物零与辍学的方法缺乏严格的 理论保证。该建议的目标是开发模型,支持数学理论以及 明确考虑了真正的生物零的存在的计算工具。矩阵插补 该约束涉及随机矩阵理论中的计算挑战以及理论问题 高维统计。这些包括排名估计和低等级稀疏矩阵从部分中恢复 观察到的数据以及在辍学和零的存在下进行的,我们计划基于 非平滑持续优化,并获得随附的统计保证,我们还计划开发 合奏学习方法巧妙地结合了多种归档算法的输出。最后,我们希望 通过研究最小值和信息较低 边界。为了应对这些挑战,我们将以我们有希望的初步结果和共同专业知识为基础 光谱方法的研究者,高维统计,基质分析,数值优化和基因组学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric C Chi其他文献

Eric C Chi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric C Chi', 18)}}的其他基金

Imputing Single Cell Rna Sequencing Data: Mathematical, Statistical And Computational Challenges
估算单细胞 RNA 测序数据:数学、统计和计算挑战
  • 批准号:
    10577202
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
Imputing single cell RNA sequencing data: Mathematical, statistical and computational challenges
估算单细胞 RNA 测序数据:数学、统计和计算挑战
  • 批准号:
    10021696
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
Imputing single cell RNA sequencing data: Mathematical, statistical and computational challenges
估算单细胞 RNA 测序数据:数学、统计和计算挑战
  • 批准号:
    10242066
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:

相似国自然基金

基于机器学习算法的针刺干预偏头痛预后差异生物学机制和临床-多组学预测模型构建研究
  • 批准号:
    82374572
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
微生物生态系统共性规律探索及其对扰动响应的预测算法研究
  • 批准号:
    32300078
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于耦合矩阵-张量分解算法开发环境微生物标志物挖掘工具
  • 批准号:
    42377106
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于生成式人工智能的易合成与高生物活性的分子三维结构设计
  • 批准号:
    22373085
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
面向可信虹膜识别的脉冲表达学习
  • 批准号:
    62306307
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
New Algorithms for Cryogenic Electron Microscopy
低温电子显微镜的新算法
  • 批准号:
    10543569
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
Discovery-Driven Mathematics and Artificial Intelligence for Biosciences and Drug Discovery
用于生物科学和药物发现的发现驱动数学和人工智能
  • 批准号:
    10551576
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
Biomarkers for Brain Resetting as an Assistive Tool in the Treatment of Status Epilepticus
大脑重置生物标志物作为治疗癫痫持续状态的辅助工具
  • 批准号:
    10698969
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
  • 批准号:
    10727940
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了