Engineering Escherichia coli for sialylation of therapeutic proteins
工程大肠杆菌用于治疗性蛋白质的唾液酸化
基本信息
- 批准号:8647417
- 负责人:
- 金额:$ 60.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-10 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnabolismAnimal ModelAnimalsAranestBacteriaBenchmarkingBiological AssayBiomanufacturingBioreactorsBiotechnologyBloodCapitalCarbohydratesCell Culture TechniquesCellsChargeChemicalsClinicalCollaborationsDataDrug KineticsDrug StabilityDrug TargetingEngineeringEnzymesErythrocytesErythropoietinEscherichia coliEukaryotic CellExcisionFeedbackFermentationGenerationsGenetic EngineeringGlycolipidsGlycopeptidesGlycoproteinsGoalsHalf-LifeHumanHuman bodyImmune responseImmunoassayIn VitroKidneyLeadLinkMarketingModelingMusPathway interactionsPatientsPeptidesPerformancePharmaceutical PreparationsPharmacologic SubstancePhasePolysaccharidesPreclinical TestingProcessProductionPropertyProtein GlycosylationProteinsRattusRecombinant ProteinsRecombinantsRelative (related person)Renal clearance functionReticuloendothelial SystemSerumSialic AcidsSiteSolubilitySolutionsSomatropinStructureTechnologyTherapeuticThompson-Friedenreich AntigenTimeValidationasparaginasebasechemical stabilitycommercializationcost effectivedesigndolichyl-diphosphooligosaccharide - protein glycotransferasedrug candidateglycosylationimmunogenicityimprovedlink proteinneutralizing antibodyphase 1 studypre-clinicalpublic health relevancesialylationstability testingsuccesstherapeutic proteinuptake
项目摘要
Project Summary
Glycoengineering is a clinically-validated strategy to enhance the therapeutic properties of protein and peptide
drugs. This strategy involves the attachment and manipulation of carbohydrates (i.e., glycans) to improve the
stability, solubility, serum half-life, and activity of these drugs. A key factor in most glycoengineering is the
inclusion of terminal sialic acid residues on glycans by a process known as sialylation. Sialic acid is large and
carries a negative charge which serves to improve stability, decrease aggregation, slow clearance, and impede
immune response. Nearly all examples of glycoengineering require eukaryotic cell culture and/or the in vitro
conjugation of glycans. Unfortunately, eukaryotic cell culture can be expensive, time consuming, and can result
in inconsistent and incomplete sialylation. Although in vitro glycosylation can result in similar effects, the
process is expensive, difficult, and has not been scalable to a commercial level. Glycoengineering would be
greatly improved if a simple host cell such as Escherichia coli was used for production of sialylated
therapeutic proteins. Glycobia specializes in genetically engineering bacteria for the bottom up
glycoengineering (BUG) of therapeutic glycoproteins. Since E. coli lacks native protein glycosylation pathways
of any kind, BUG can produce tailored glycan structures that can be site-specifically conjugated to target
proteins. The specific hypothesis behind this proposal is that glycoengineered E. coli can produce enhanced
therapeutic proteins by sialylation in a short, single fermentation. In Phase I of this project we engineered E.
coli to attach humanlike, sialyl-T glycans to recombinant proteins. The sialyl-T glycan is a sialylated Thomsen-
Friedenreich antigen that can be found on erythrocytes in the human body. This type of glycosylation is
simply not possible in any other known expression host. We also show that bacterial glycosylation
improves the in vitro stability of therapeutic proteins expressed in E. coli. We anticipate that our BUG
expression platform will be capable of producing sialylated proteins in a controlled, rapid, cost-effective
manner. The objective of this proposal is to synthesize and advance our first drug targets from
glycoengineered E. coli into preclinical testing by: (i) expressing, purifying, and characterizing glycosylated
drug candidates from E. coli and (ii) testing stability, pharmacokinetics, and immunogenicity of these drug
candidates in animal models. We will compare their performance to aglycosylated and asialylated versions of
these same drugs to isolate the effects of sialylation. The benchmark of success for this project is the
generation of positive preclinical validation data to further advance commercialization of this technology. This
bacterial expression platform represents a transformative solution to the unanswered biomedical challenge of
generating cost-effective glycoengineered protein drugs for both companies and patients.
项目概要
糖工程是一种经过临床验证的策略,可增强蛋白质和肽的治疗特性
药物。该策略涉及碳水化合物(即聚糖)的附着和操作,以改善
这些药物的稳定性、溶解度、血清半衰期和活性。大多数糖工程的一个关键因素是
通过称为唾液酸化的过程将末端唾液酸残基包含在聚糖上。唾液酸含量大,
带有负电荷,可提高稳定性、减少聚集、减缓清除并阻碍
免疫反应。几乎所有糖工程的例子都需要真核细胞培养和/或体外
聚糖的结合。不幸的是,真核细胞培养可能昂贵、耗时,并且可能导致
唾液酸化不一致和不完全。尽管体外糖基化可以产生类似的效果,
该过程昂贵、困难,并且尚未扩展到商业水平。糖工程将是
如果使用简单的宿主细胞(例如大肠杆菌)来生产唾液酸化的产物,则效果会大大改善
治疗性蛋白质。 Glycobia 专注于自下而上的基因工程细菌
治疗性糖蛋白的糖工程(BUG)。由于大肠杆菌缺乏天然蛋白质糖基化途径
任何种类的 BUG 都可以产生定制的聚糖结构,可以与目标位点特异性结合
蛋白质。该提案背后的具体假设是,糖工程大肠杆菌可以产生增强的
在短暂的单一发酵中通过唾液酸化产生治疗性蛋白质。在该项目的第一阶段,我们设计了 E.
大肠杆菌将类人唾液酸-T 聚糖附着到重组蛋白上。唾液酸-T 聚糖是唾液酸化的 Thomsen-
Friedenreich 抗原可以在人体内的红细胞上找到。这种类型的糖基化是
在任何其他已知的表达宿主中根本不可能。我们还表明细菌糖基化
提高大肠杆菌中表达的治疗蛋白的体外稳定性。我们预计我们的BUG
表达平台将能够以受控、快速、经济高效的方式生产唾液酸化蛋白
方式。该提案的目的是合成并推进我们的第一个药物靶点
通过以下方式将糖基化大肠杆菌纳入临床前测试:(i) 表达、纯化和表征糖基化
来自大肠杆菌的候选药物以及 (ii) 测试这些药物的稳定性、药代动力学和免疫原性
动物模型的候选者。我们将把它们的性能与无糖基化和无唾液酸化版本进行比较
这些相同的药物可以隔离唾液酸化的影响。该项目成功的标准是
生成积极的临床前验证数据,以进一步推进该技术的商业化。这
细菌表达平台代表了尚未解决的生物医学挑战的变革性解决方案
为公司和患者生产具有成本效益的糖工程蛋白药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Judith H Merritt其他文献
Judith H Merritt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Judith H Merritt', 18)}}的其他基金
Glycoconjugate therapeutic peptides for improved treatment of human diseases
用于改善人类疾病治疗的糖缀合物治疗肽
- 批准号:
8903017 - 财政年份:2013
- 资助金额:
$ 60.22万 - 项目类别:
Engineering Escherichia coli for sialylation of therapeutic proteins
工程大肠杆菌用于治疗性蛋白质的唾液酸化
- 批准号:
8918664 - 财政年份:2010
- 资助金额:
$ 60.22万 - 项目类别:
相似国自然基金
苯丙氨酰tRNA合成酶α(FARSA)调控脂肪细胞脂质代谢的机制研究
- 批准号:82300954
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多组学研究STAT3调控CKMT2和CD36-FABP4影响脂肪细胞参与乳腺癌细胞磷酸肌酸合成的耐药代谢重编程
- 批准号:82360604
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
微生物固定二氧化碳合成琥珀酸的代谢流调控及其机制解析
- 批准号:22378166
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
醛固酮瘤丙酸代谢异常通过MMA-肥大细胞-5-羟色胺-PCCA环路促进醛固酮合成的机制研究
- 批准号:82300887
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于T细胞代谢重编程研究二十五味儿茶丸通过促进亚精胺合成纠正Treg/Th17失衡治疗类风湿关节炎的作用机制
- 批准号:82360862
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Novel mechanisms of muscle and bone loss with HIV infection, antiretroviral therapy, and aging.
HIV 感染、抗逆转录病毒治疗和衰老导致肌肉和骨质流失的新机制。
- 批准号:
10696502 - 财政年份:2023
- 资助金额:
$ 60.22万 - 项目类别:
The role and regulation of mitochondrial localization in mature neurons.
成熟神经元线粒体定位的作用和调节。
- 批准号:
10634116 - 财政年份:2023
- 资助金额:
$ 60.22万 - 项目类别:
Mechanisms of Pro-Resolving Mediators in Periodontal Regeneration
牙周再生中促溶解介质的机制
- 批准号:
10764989 - 财政年份:2023
- 资助金额:
$ 60.22万 - 项目类别:
Evaluation of a Next Generation SchistoShield Vaccine
下一代 SchistoShield 疫苗的评估
- 批准号:
10761529 - 财政年份:2023
- 资助金额:
$ 60.22万 - 项目类别:
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 60.22万 - 项目类别: