Near-IR Photorelease Chemistry: Discovery and Applications

近红外光释放化学:发现和应用

基本信息

项目摘要

Photoremovable caging groups find extensive use in many fields ranging from cell biology to materials science. The general requirement of UV or blue light is a significant limitation due to associated toxicity and poor tissue penetration. By contrast, light between 650 and 900 nm, often referred to as the near-IR window, is cytocompatible and has significant tissue penetration (centimeters). Generally useful single photon reactions in the near-IR range would allow "uncaging" approaches to be applied in complex biological settings. My lab is approaching this difficult challenge by defining and then using the chemical reactions involved in the photodecomposition or "photobleaching" of near-IR fluorophores. These oft-encountered light-initiated processes can occur with rapid kinetics, often undesirably so. Our current efforts in this area are split in three aims. Aim 1: Development and mechanistic studies of near-IR photorelease chemistry. We have developed an uncaging reaction sequence initiated by near-IR light using readily synthesized C4'-dialkylamine-substituted heptamethine cyanines. We have shown that a variety of phenol- and amine- containing small molecules are quickly uncaged upon irradiation with low energy light. Detailed mechanistic studies involving mass spectrometry, NMR, and absorbance techniques have shown that release occurs through regioselective C-C cleavage and then hydrolysis of the C4'-amine. We are currently broadening the scope of the release process and examining aspects of the mechanism in detail using computational (collaboration with Dr. Joseph Ivanic) and experimental techniques. We have also developed an orthogonal approach to this problem that uses the a photoinduced-electron transfer process to cleave the axial ligand of silicon phthalocyanine fluorophores. Aim 2: Near-IR light control of gene expression. Several studies over the past 15 years have used UV light-mediated uncaging of small molecules in combination with inducible gene expression systems. It is quite likely that near-IR uncaging will prove beneficial to advance these techniques into increasingly complex biological settings and organismal contexts. We have shown that our approach can be used to regulate gene expression through uncaging of an estrogen-receptor antagonist in a ligand-dependent CreERT/LoxP-reporter cell line (collaboration with Dr. Susan Mackem). Our recent studies have defined chemical modifications that improve cellular uptake and retention, enabling recombination with high spatial control. We are currently applying this method in advanced models to probe pressing questions in developmental biology. Aim 3: Application of uncaging reactions for targeted drug delivery. Existing methods that use light for therapeutic interventions typically rely on the local generation of reactive oxygen species (ROS). The local delivery of potent therapeutic agents elicit alternative mechanistic paradigms, while achieving otherwise unattainable potency. We are applying our light-cleavable chemistry for targeted drug delivery (collaboration with Dr. Hisataka Kobayashi). This approach merges the unique potency of small molecule drugs with the high spatial control afforded by light release and molecular targeting. The use of tissue penetrant, cytocompatible near-IR light is critical because existing uncaging chemistries using UV or blue light would not be suitable for this application. In this area, we reported the first example of near-IR light cleavable antibody drug conjugate strategy. We have developed conjugates that release the potent anticancer natural product, duocarmycin. These conjugates can be tracked in vivo using fluorescence and uncaged attainable flux from an external CW laser source. These compounds have shown highly promising antitumor activity in in vivo models. We are currently pursuing additional optimization efforts.
可光熟悉的笼子群在从细胞生物学到材料科学的许多领域中找到了广泛的使用。紫外线或蓝光的一般需求是由于毒性和组织渗透不良而受到的重大限制。相比之下,通常称为近红外窗口的650至900 nm之间的光是细胞相容的,具有明显的组织穿透力(厘米)。通常,在近IR范围内有用的单个光子反应将允许在复杂的生物学环境中应用“分离”方法。我的实验室正在通过定义和使用近红外荧光团的光二次组成或“光漂白”的化学反应来应对这一困难挑战。这些经常遇到的光启动过程可能会发生在快速动力学中,通常是不希望的。我们目前在这一领域的努力分为三个目标。 AIM 1:近IR光释放化学的发展和机械研究。我们已经开发了一个近红外光引发的分离反应序列,并使用易于合成的C4'Dialkylamine溶于二取代的己氨酸氰氨酸。我们已经表明,在低能量光线下照射时,各种含有苯酚和胺 - 含有小分子很快就会液化。涉及质谱,NMR和吸光度技术的详细机械研究表明,释放是通过区域选择性的C-C裂解进行的,然后进行C4'-胺的水解。目前,我们正在扩大发布过程的范围,并使用计算(与Joseph Ivanic博士的协作)和实验技术详细研究该机制的各个方面。我们还为这个问题开发了一种正交方法,该方法使用光诱导的电子转移过程来裂解硅邻苯二甲酸苯胺荧光团的轴向配体。 AIM 2:基因表达的近IR光控制。在过去的15年中,几项研究使用了紫外线介导的小分子与诱导基因表达系统的结合。将这些技术推向日益复杂的生物学环境和有机环境,近红外未约会很可能会有益。我们已经表明,我们的方法可用于通过在配体依赖性的Creert/Loxp-Reporter细胞系中(与Susan Mackem博士的协作)中的雌激素受体拮抗剂进行脱离来调节基因表达。我们最近的研究定义了改善细胞摄取和保留率的化学修饰,从而可以通过高空间控制重组。目前,我们正在高级模型中应用这种方法来探测发育生物学中的问题。 AIM 3:应用分期反应用于靶向药物。使用光进行治疗干预措施的现有方法通常取决于当地的活性氧(ROS)。有效的治疗剂的局部输送引起了替代机械范式,同时实现了无法实现的效力。我们正在将可触发的化学物质应用于靶向药物(与Hisataka Kobayashi博士的合作)。这种方法将小分子药物的独特效力与光释放和分子靶向提供的高空间控制。使用组织渗透剂,细胞相容的近红外光非常关键,因为现有的使用UV或蓝光的化学效果不适合此应用。在这一领域,我们报道了近红外光裂解抗体药物共轭策略的第一个例子。我们开发了释放有效的抗癌天然产品Duocarmycin的结合物。这些结合物可以使用荧光和外部CW激光源可实现的通量在体内进行跟踪。这些化合物在体内模型中显示出高度有希望的抗肿瘤活性。我们目前正在追求其他优化工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Martin Schnermann其他文献

Martin Schnermann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Martin Schnermann', 18)}}的其他基金

New Synthetic Approaches to Small Molecules for Imaging
用于成像的小分子合成新方法
  • 批准号:
    9556612
  • 财政年份:
  • 资助金额:
    $ 104.3万
  • 项目类别:
New Synthetic Approaches to Small Molecules for Imaging
用于成像的小分子合成新方法
  • 批准号:
    9153959
  • 财政年份:
  • 资助金额:
    $ 104.3万
  • 项目类别:
Synthesis and evaluation of small-molecule imaging agents
小分子显像剂的合成与评价
  • 批准号:
    8763576
  • 财政年份:
  • 资助金额:
    $ 104.3万
  • 项目类别:
New Synthetic Approaches to Small Molecules for Imaging
用于成像的小分子合成新方法
  • 批准号:
    10926235
  • 财政年份:
  • 资助金额:
    $ 104.3万
  • 项目类别:
Near-IR Photorelease Chemistry: Discovery and Applications
近红外光释放化学:发现和应用
  • 批准号:
    10262370
  • 财政年份:
  • 资助金额:
    $ 104.3万
  • 项目类别:
New Synthetic Approaches to Small Molecules for Imaging
用于成像的小分子合成新方法
  • 批准号:
    10486873
  • 财政年份:
  • 资助金额:
    $ 104.3万
  • 项目类别:
Near-IR Photorelease Chemistry: Discovery and Applications
近红外光释放化学:发现和应用
  • 批准号:
    10014731
  • 财政年份:
  • 资助金额:
    $ 104.3万
  • 项目类别:
Near-IR Photorelease Chemistry: Discovery and Applications
近红外光释放化学:发现和应用
  • 批准号:
    8938197
  • 财政年份:
  • 资助金额:
    $ 104.3万
  • 项目类别:
New Synthetic Approaches to Small Molecules for Imaging
用于成像的小分子合成新方法
  • 批准号:
    8938168
  • 财政年份:
  • 资助金额:
    $ 104.3万
  • 项目类别:
New Synthetic Approaches to Small Molecules for Imaging
用于成像的小分子合成新方法
  • 批准号:
    10262353
  • 财政年份:
  • 资助金额:
    $ 104.3万
  • 项目类别:

相似国自然基金

青蒿素类药的疟原虫单克隆抗体缀合物导向药物研究
  • 批准号:
    38870447
  • 批准年份:
    1988
  • 资助金额:
    3.0 万元
  • 项目类别:
    面上项目

相似海外基金

Legumain to the rescue: A new ADC linker strategy to address the limitations of cathepsin cleavage
Legumain 来拯救:一种新的 ADC 连接策略,解决组织蛋白酶切割的局限性
  • 批准号:
    10561636
  • 财政年份:
    2022
  • 资助金额:
    $ 104.3万
  • 项目类别:
Legumain to the rescue: A new ADC linker strategy to address the limitations of cathepsin cleavage
Legumain 来拯救:一种新的 ADC 连接策略,解决组织蛋白酶切割的局限性
  • 批准号:
    10342525
  • 财政年份:
    2022
  • 资助金额:
    $ 104.3万
  • 项目类别:
Near-IR Photorelease Chemistry: Discovery and Applications
近红外光释放化学:发现和应用
  • 批准号:
    10262370
  • 财政年份:
  • 资助金额:
    $ 104.3万
  • 项目类别:
Near-IR Photorelease Chemistry: Discovery and Applications
近红外光释放化学:发现和应用
  • 批准号:
    10014731
  • 财政年份:
  • 资助金额:
    $ 104.3万
  • 项目类别:
Near-IR Photorelease Chemistry: Discovery and Applications
近红外光释放化学:发现和应用
  • 批准号:
    10486888
  • 财政年份:
  • 资助金额:
    $ 104.3万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了