Survival Motor Neuron (SMN) function in motoneuron development
运动神经元存活 (SMN) 在运动神经元发育中的功能
基本信息
- 批准号:9899326
- 负责人:
- 金额:$ 36.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAmyotrophic Lateral SclerosisAxonBinding ProteinsBiochemistryBiologyCellsCessation of lifeChildChildhoodComplementComplexDataData SetDefectDendritesDevelopmentDiagnosisDiseaseFailureFunctional disorderGeneticGenetic DiseasesGrowthHumanImmunoprecipitationInfantInheritedLeadMethodsModelingMolecularMotorMotor NeuronsMutateMutationNatureNeuronsNeuropathyNeurosciencesParalysedPhenotypePositioning AttributeProblem SolvingProcessProteinsRNARNA ProcessingRNA TransportRNA metabolismRNA-Binding ProteinsResearchRoleSMN protein (spinal muscular atrophy)Skeletal MuscleSpectrophotometrySpinal DiseasesSpinal Muscular AtrophyTestingTherapeuticTissuesTransgenic OrganismsWestern BlottingZebrafishcell typedesignexperienceexperimental studyimaging geneticsin vivoinfant deathinnovationinsightlink proteinmotor neuron functionmutantnerve supplynovelnovel strategiespolarized cellprotein complexsynaptogenesistargeted treatmenttraffickingtranscriptome sequencing
项目摘要
Project Summary
Understanding the mechanistic basis of motoneuron dysfunction and its role in motoneuron diseases would fill a
major gap in neuroscience and advance new approaches for treating devastating diseases such as amyotrophic
lateral sclerosis (ALS), hereditary motor neuropathy and spinal muscular atrophy (SMA). These diseases afflict
over one hundred thousand adults, infants, and children per year in the US. ALS and SMA are particularly
devastating diseases resulting in paralysis and death often within a few years of diagnosis. The genetics of these
diseases indicates that motoneurons are particularly vulnerable to defects in proteins tasked with critical RNA
processing functions. However, exactly why motoneurons are vulnerable to RNA processing defects is not
understood. The scientific rationale for this project is to elucidate mechanistically how mishanding of
RNAs can disrupt motoneuron function and lead to motoneuron death. Elucidating the motoneuron-specific
RNA processing defects caused by these mutations is essential for understanding motoneurons in both normal
and diseased conditions and will direct critically needed therapeutics. To tackle this issue, we focus on the
ubiquitously expressed survival motor neuron (SMN) protein and the motoneuron disease SMA. SMA is a
motoneuron disease that affects infants/children and is caused by low survival motor neuron (SMN) protein levels.
SMN functions in many aspects of RNA metabolism. However, the critical RNA handling function of SMN in
motoneurons is unresolved. Evidence supports that SMN interacts with various neuronal RNA binding proteins
(RBPs) that stabilize and/or transport RNAs to axons and dendrites during development. Using unique zebrafish
models that we have generated, we have shown that SMN is required for normal vertebrate motoneuron
development including dendrite formation and motor axon outgrowth and arborization. This is a key finding and
reveals that SMA is not a degenerative defect, but the motoneuron dysfunction is caused by poor motoneuron
development leading to neuronal failure. We hypothesize that SMN associates with neuronal RBPs and their
cargo RNAs in a developmentally regulated manner to direct motoneuron development including axon
out growth and branching, dendrite formation, and synapse formation. To test this we will answer three
essential questions: What SMN:RBP complexes are in developing motoneurons? How do defects in these RBPs
affect motoneuron development? What RNAs are in these complexes, and how are they affected when SMN or
the RBPs are missing or decreased? All of our experiments will be performed in vivo in motoneurons, the relevant
cell type and use a broad range of experimental approaches such as biochemistry, mass spectrophotometry,
RNAseq, single neuron imaging and genetics. Data from these experiments will have broad implications for
understanding RNA involvement in normal motoneuron development, SMA, and other motoneuron diseases such
as ALS. In addition, our approach will rigorously test the importance of SMN:RBP complexes and their associated
RNAs revealing a fundamental molecular mechanism in motoneuron biology.
项目概要
了解运动神经元功能障碍的机制基础及其在运动神经元疾病中的作用将填补
神经科学领域的重大差距,并提出治疗肌萎缩等破坏性疾病的新方法
侧索硬化症(ALS)、遗传性运动神经病和脊髓性肌萎缩症(SMA)。这些疾病困扰着
美国每年有超过十万名成人、婴儿和儿童。 ALS 和 SMA 特别是
毁灭性的疾病往往在诊断后几年内就会导致瘫痪和死亡。这些基因的遗传
疾病表明运动神经元特别容易受到负责关键 RNA 的蛋白质缺陷的影响
处理功能。然而,运动神经元为何容易受到 RNA 加工缺陷的影响尚不明确。
明白了。该项目的科学原理是从机械上阐明如何处理不当
RNA 可以破坏运动神经元功能并导致运动神经元死亡。阐明运动神经元特异性
这些突变引起的 RNA 加工缺陷对于理解正常和正常运动神经元至关重要。
和疾病状况,并将指导急需的治疗方法。为了解决这个问题,我们重点关注
普遍表达的运动神经元存活 (SMN) 蛋白和运动神经元疾病 SMA。 SMA 是一种
影响婴儿/儿童的运动神经元疾病,由低存活运动神经元 (SMN) 蛋白水平引起。
SMN 在 RNA 代谢的许多方面发挥作用。然而,SMN 的关键 RNA 处理功能
运动神经元尚未解决。有证据支持 SMN 与各种神经元 RNA 结合蛋白相互作用
(RBP) 在发育过程中稳定 RNA 和/或将 RNA 转运至轴突和树突。使用独特的斑马鱼
我们生成的模型表明,正常脊椎动物运动神经元需要 SMN
发育包括树突形成和运动轴突生长和分枝。这是一个关键发现
揭示SMA并非退行性缺陷,而是运动神经元功能不良导致运动神经元功能障碍
发育导致神经元衰竭。我们假设 SMN 与神经元 RBP 及其相关
货物RNA以发育调节的方式指导运动神经元发育,包括轴突
生长和分支、树突形成和突触形成。为了测试这一点,我们将回答三个
基本问题:什么 SMN:RBP 复合物在发育中的运动神经元中起作用?这些 RBP 中的缺陷是如何产生的
影响运动神经元发育?这些复合物中有哪些 RNA,以及当 SMN 或
RBP 缺失或减少?我们所有的实验都将在运动神经元体内进行,相关的
细胞类型并使用广泛的实验方法,如生物化学、质谱、
RNAseq、单神经元成像和遗传学。这些实验的数据将产生广泛的影响
了解 RNA 参与正常运动神经元发育、SMA 和其他运动神经元疾病,例如
作为肌萎缩侧索硬化症。此外,我们的方法将严格测试 SMN:RBP 复合物及其相关的重要性
RNA 揭示了运动神经元生物学的基本分子机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sharon L Amacher其他文献
Sharon L Amacher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sharon L Amacher', 18)}}的其他基金
Developmental regulation of oscillatory expression
振荡表达的发育调节
- 批准号:
10299003 - 财政年份:2015
- 资助金额:
$ 36.49万 - 项目类别:
Developmental regulation of oscillatory expression
振荡表达的发育调节
- 批准号:
10631091 - 财政年份:2015
- 资助金额:
$ 36.49万 - 项目类别:
Developmental regulation of oscillatory expression
振荡表达的发育调节
- 批准号:
10456210 - 财政年份:2015
- 资助金额:
$ 36.49万 - 项目类别:
Developmental regulation of oscillatory expression
振荡表达的发育调节
- 批准号:
10799064 - 财政年份:2015
- 资助金额:
$ 36.49万 - 项目类别:
相似国自然基金
TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
- 批准号:52361020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
- 批准号:52309088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
- 批准号:42376002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
- 批准号:42371397
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
Mechanistic insights of cortical hyperexcitability in ALS
ALS 皮质过度兴奋的机制见解
- 批准号:
10727465 - 财政年份:2023
- 资助金额:
$ 36.49万 - 项目类别:
Functional role of Sec20, a BH3 and Secretory (Sec) domain protein, in neurons and its relevance to a motor neuron disease in Drosophila
Sec20(一种 BH3 和分泌 (Sec) 结构域蛋白)在神经元中的功能作用及其与果蝇运动神经元疾病的相关性
- 批准号:
10635856 - 财政年份:2023
- 资助金额:
$ 36.49万 - 项目类别:
Transcriptional regulation over neurogenesis of cortical output neuron segmental identity and diversity
皮质输出神经元节段同一性和多样性的神经发生的转录调控
- 批准号:
10638147 - 财政年份:2023
- 资助金额:
$ 36.49万 - 项目类别:
A novel mitochondria-to-lysosome stress signaling pathway in degenerative disease and aging
退行性疾病和衰老中一种新的线粒体到溶酶体应激信号通路
- 批准号:
10722759 - 财政年份:2023
- 资助金额:
$ 36.49万 - 项目类别:
Age Differences and Mechanisms of Ketogenic Diet Induced Bone Loss
生酮饮食导致骨质流失的年龄差异和机制
- 批准号:
10740305 - 财政年份:2023
- 资助金额:
$ 36.49万 - 项目类别: