Atheroprotective vs. Atherogenic Glycocalyx Mechanotransduction Mechanisms

动脉粥样硬化保护与致动脉粥样硬化糖萼机械转导机制

基本信息

  • 批准号:
    9768526
  • 负责人:
  • 金额:
    $ 16.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-04 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The K01 will facilitate Dr. Ebong's development of her independent research position as a tenure-track professor. Her research objective is to combine engineering with advanced microscopy, cell and molecular biology, and animal pathophysiology to elucidate endothelial cell (EC) glycocalyx (GCX) ultrastructure and its functional role in EC mechanotransduction and vascular function in health and atherosclerosis. With her background in core engineering theory and practice, and her solid interdisciplinary research experience that blends cardiovascular and cellular bioengineering with molecular biology, Dr. Ebong is highly qualified to carry out the Research Strategy and meet the Career Goals and Objectives. This award will enable her to expand her research, enhance its interpretation, and produce new discoveries. Dr. Ebong will be mentored by an interdisciplinary team that has broad expertise in bioengineering, in vitro and in vivo shear and mechanotransduction experiments, in vivo modeling of vascular pathology, glycobiology, microscopy, anatomy and structural biology, and molecular biology. The make-up of this team will provide her with an extensive network of techniques, facilities, and research institutions. The mentored activities proposed for this K01 program will be primarily conducted at Northeastern University and performed in Dr. Ebong's laboratory. Faculty and facilities of Northeastern (Drs. Ruberti, Khaw, and Hancock), The City College of New York (Dr. Tarbell), Albert Einstein College of Medicine (Mr. Macaluso), Emory University School of Medicine and Georgia Institute of Technology (Dr. Jo), Temple University School of Medicine (Dr. Rizzo), and University of California at San Diego (Dr. Esko) will also support Dr. Ebong's training. Atherosclerosis occurs at blood vessel sites, such as branches, where unstable (disturbed) flow makes the endothelial cell (EC) layer dysfunctional. Healthy tissue lines straight blood vessels where streamlined (uniform) flow permits normal EC function. The mechanisms by which flow alters EC function to prevent or promote atherosclerosis remain unclear. Defining these mechanisms is the primary focus of Dr. Ebong's research program. The K01 research strategy proposed by Dr. Ebong and her team is to study the structure and function of a prime EC mechanotransducer candidate-the surface glycocalyx (GCX)-which directly senses flow, can transmit force via the cytoskeleton to various biologically active cellulr sites, and sheds in atherosclerosis. GCX is essential for flow conversion to EC functions including nitric oxide (NO) release, cytoskeleton organization, gap junction communication, and cell shape that are abnormal in atherosclerosis. Dr. Ebong has already shown that flow induces vasoregulatory EC-type NO synthase (eNOS) activation, but only in the presence of the heparan sulfate (HS) glypican-1 (GPC-1) component of the EC GCX. Her work has revealed that flow-induced EC remodeling relies on the HS syndecan-1 (SDC-1) component of the GCX. Using rapid freezing/freeze substitution (RF/FS) transmission electron microscopy (TEM), she is currently defining the EC GCX ultrastructure and its changes due to cellular origin and the biochemical and flow environment. During the period of the K01 award, Dr. Ebong and her team will advance this work by testing the hypothesis that EC respond differently to uniform and disturbed flow through dynamic changes in GCX ultrastructure (Aim 1), which trigger the caveolae and cytoskeleton (and subsequently, the gap junctions and basal matrix) to differentially activate EC signaling and remodeling events (Aim 2) that lead to vascular health or disease (Aim 3). This hypothesis will be tested using cultured EC with intact or manipulated GCX, which are subjected to atheroprotective and atherogenic flow conditions that are replicated in vitro using a parallel plate flow chamber. Mouse models of GCX component deletion, acute disturbed flow, endothelial and vascular dysfunction, and atherosclerosis will also be employed. Flow-induced GCX thickness, morphology, and subcomponent content and organization will be assessed. Flow- and GCX-regulation of EC signaling and remodeling events such as eNOS activation and NO production, connexin-specific gap junction signaling, and remodeling of cell shape and basal adhesions will be examined. GCX component-specific involvement in EC- dependent vasoregulation, the development of robust atherosclerosis, and the determination of lesion complexity will also be studied. The team expects to identify GCX components that are biomarkers of atherosclerosis. The findings of this research will be essential for engineering new diagnostics and therapeutics that target the EC GCX to combat atherosclerosis. Dr. Ebong is talented, the mentoring and research team is experienced and interdisciplinary, and the research strategy is exciting and innovative. Without a doubt, Dr. Ebong will emerge from the K01 as an independent investigator with a unique identity, a wide-range of powerful research tools, a robust research infrastructure, and a voice in high-level discourse on GCX-related approaches to the prevention, diagnosis, and treatment of atherosclerosis. (End of Abstract)
描述(由申请人提供):K01将促进Ebong博士担任终身教授的独立研究职位。她的研究目标是将工程与晚期显微镜,细胞和分子生物学以及动物病理生理学结合起来,以阐明内皮细胞(EC)糖脂化(GCX)超微结构及其在EC机械传播和血管功能中在健康和动脉粥样硬化中的功能中的功能作用。 Ebong博士具有核心工程理论和实践的背景,以及将心血管和细胞生物工程与分子生物学融为一体的坚实跨学科研究经验,Ebong博士非常有资格执行研究策略并实现职业目标和目标。该奖项将使她能够扩大研究,增强其解释并产生新的发现。 Ebong博士将受到一个跨学科团队的指导,该团队在生物工程,体外和体内剪切和机械转导实验,血管病理学,糖生物学,显微镜,解剖学和结构生物学以及分子生物学的体内模型中具有广泛的专业知识。该团队的组成将为她提供广泛的技术,设施和研究机构网络。该K01计划提出的指导活动将主要在东北大学进行,并在Ebong博士的实验室进行。纽约市城市学院(塔贝尔博士),艾伯特·爱因斯坦医学院(Macaluso先生),埃默里大学医学院和乔治亚州理工学院(JO)艾尔伯特·爱因斯坦医学院(Macaluso先生),纽约市城市学院(塔贝尔博士)(塔贝尔博士)(塔贝尔博士)的教职员工和设施(塔贝尔博士)(玛卡卢索先生)(乔) 动脉粥样硬化发生在血管部位,例如分支,那里不稳定(干扰)流动使内皮细胞(EC)层功能失调。健康的组织线直血管,流线(均匀)流动允许正常的EC功能。流动改变EC的功能以预防或促进动脉粥样硬化的机制尚不清楚。定义这些机制是Ebong博士研究计划的主要重点。 Ebong博士及其团队提出的K01研究策略是研究Prime EC机械转换候选者的结构和功能 - 表面糖脂(GCX) - 直接感受到流动的流动,可以通过细胞骨架向各种生物学活跃的活性纤维素位点以及动脉粥样硬化中的囊杆传播力。 GCX对于流动转换为EC功能至关重要,包括一氧化氮(NO)释放,细胞骨架组织,间隙连接通信和细胞形状异常在动脉粥样硬化中。 Ebong博士已经表明,流动会诱导血管调节EC型NO合酶(ENOS)激活,但仅在EC GCX的硫酸乙酰肝素(HS)Glypican-1(GPC-1)成分的情况下仅存在。她的工作表明,流动诱导的EC重塑依赖于GCX的HS Syndecan-1(SDC-1)分量。使用快速冷冻/冷冻替代(RF/FS)透射电子显微镜(TEM),她目前正在定义EC GCX超微结构及其由于细胞起源以及生化和流动环境而引起的变化。 During the period of the K01 award, Dr. Ebong and her team will advance this work by testing the hypothesis that EC respond differently to uniform and disturbed flow through dynamic changes in GCX ultrastructure (Aim 1), which trigger the caveolae and cytoskeleton (and subsequently, the gap junctions and basal matrix) to differentially activate EC signaling and remodeling events (Aim 2) that lead to vascular health or disease (目标3)。该假设将使用具有完整或操纵的GCX培养的EC进行检验,该假设受到动脉保护和动脉粥样硬化流动条件的约束,使用平行板流室在体外复制。 GCX成分缺失,急性干扰流动,内皮和血管功能障碍以及动脉粥样硬化的小鼠模型也将被使用。将评估流动引起的GCX厚度,形态和子组件内容和组织。 EC信号传导和重塑事件的流量和GCX调节,例如eNOS激活以及无生产,连接蛋白特异性间隙连接信号传导以及细胞形状的重塑和基础粘附的重塑。还将研究GCX成分特异性的参与EC依赖性血管调节,鲁棒性动脉粥样硬化的发展以及病变复杂性的测定。该团队希望鉴定出是动脉粥样硬化的生物标志物的GCX成分。这项研究的发现对于针对EC GCX来应对动脉粥样硬化的新诊断和治疗方法将至关重要。 Ebong博士很有才华,指导和研究团队经验丰富且跨学科,研究策略令人兴奋和创新。毫无疑问,Ebong博士将从K01中脱颖而出,是独立的研究者,具有独特的身份,强大的研究工具,强大的研究基础设施以及有关GCX与GCX相关的预防,诊断和治疗动脉粥样硬化的方法的高级论述的声音。 (抽象的结尾)

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Diosmin and its glycocalyx restorative and anti-inflammatory effects on injured blood vessels.
地奥司明及其糖萼对受损血管的恢复和抗炎作用。
Glycocalyx in Atherosclerosis-Relevant Endothelium Function and as a Therapeutic Target.
  • DOI:
    10.1007/s11883-017-0691-9
  • 发表时间:
    2017-11-10
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Mitra R;O'Neil GL;Harding IC;Cheng MJ;Mensah SA;Ebong EE
  • 通讯作者:
    Ebong EE
Endothelial glycocalyx conditions influence nanoparticle uptake for passive targeting.
Targeted Delivery of Shear Stress-Inducible Micrornas by Nanoparticles to Prevent Vulnerable Atherosclerotic Lesions.
  • DOI:
    10.14797/mdcj-12-3-152
  • 发表时间:
    2016-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W. Wong;Shuangtao Ma;X. Tian;Andrea Banuet Gonzalez;E. Ebong;Haifa Shen
  • 通讯作者:
    W. Wong;Shuangtao Ma;X. Tian;Andrea Banuet Gonzalez;E. Ebong;Haifa Shen
Regeneration of glycocalyx by heparan sulfate and sphingosine 1-phosphate restores inter-endothelial communication.
  • DOI:
    10.1371/journal.pone.0186116
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Mensah SA;Cheng MJ;Homayoni H;Plouffe BD;Coury AJ;Ebong EE
  • 通讯作者:
    Ebong EE
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eno Essien Ebong其他文献

Eno Essien Ebong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eno Essien Ebong', 18)}}的其他基金

Glycocalyx Regeneration to Heal Vascular Inflammation and Atherosclerosis
糖萼再生治愈血管炎症和动脉粥样硬化
  • 批准号:
    10347882
  • 财政年份:
    2022
  • 资助金额:
    $ 16.02万
  • 项目类别:
Glycocalyx Regeneration to Heal Vascular Inflammation and Atherosclerosis
糖萼再生治愈血管炎症和动脉粥样硬化
  • 批准号:
    10545041
  • 财政年份:
    2022
  • 资助金额:
    $ 16.02万
  • 项目类别:
Atheroprotective vs. Atherogenic Glycocalyx Mechanotransduction Mechanisms
动脉粥样硬化保护与致动脉粥样硬化糖萼机械转导机制
  • 批准号:
    9137702
  • 财政年份:
    2015
  • 资助金额:
    $ 16.02万
  • 项目类别:

相似国自然基金

促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
  • 批准号:
    32301204
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
载Pexidartinib的纳米纤维膜通过阻断CSF-1/CSF-1R通路抑制巨噬细胞活性预防心脏术后粘连的研究
  • 批准号:
    82370515
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
泛素连接酶SMURF2通过SMAD6-COL5A2轴调控宫腔粘连纤维化的分子机制研究
  • 批准号:
    82360301
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
  • 批准号:
    82302691
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
活血通腑方调控NETs干预术后腹腔粘连组织纤维化新途径研究
  • 批准号:
    82374466
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

Probing the role of serotonin in neuropathic pain with flexible carbon microelectrode arrays
用柔性碳微电极阵列探讨血清素在神经性疼痛中的作用
  • 批准号:
    10734710
  • 财政年份:
    2022
  • 资助金额:
    $ 16.02万
  • 项目类别:
LR-IL-22 for Mitigation and Management of Radiation Injuries
LR-IL-22 用于减轻和管理辐射损伤
  • 批准号:
    10569299
  • 财政年份:
    2022
  • 资助金额:
    $ 16.02万
  • 项目类别:
GPR4 in blood brain barrier dysfunction in brain ischemia
GPR4在脑缺血血脑屏障功能障碍中的作用
  • 批准号:
    10522141
  • 财政年份:
    2022
  • 资助金额:
    $ 16.02万
  • 项目类别:
Probing the Role of Serotonin in Neuropathic Pain with Flexible Carbon Microelectrode Arrays
用柔性碳微电极阵列探讨血清素在神经性疼痛中的作用
  • 批准号:
    10419830
  • 财政年份:
    2022
  • 资助金额:
    $ 16.02万
  • 项目类别:
GPR4 in blood brain barrier dysfunction in brain ischemia
GPR4在脑缺血血脑屏障功能障碍中的作用
  • 批准号:
    10652655
  • 财政年份:
    2022
  • 资助金额:
    $ 16.02万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了