3D Printed Nano-Bionic Organs
3D打印纳米仿生器官
基本信息
- 批准号:8742786
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-30 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAcousticsAddressAnatomyAreaAuditoryBiologicalBiologyBionicsCartilageCellsCochleaDevelopmentDevicesEarElectrodesElectronicsExhibitsEyeFrequenciesGenerationsGeometryHumanHydrogelsImpairmentIn VitroInvestigationLeftMethodsMusicNoseOrganPolymersPrintingProcessProsthesisRadioRegenerative MedicineShapesSilverSystemTissue EngineeringTissuesUltrasonicsUser-Computer InterfaceWorkbiological systemsnanonanomaterialsnanoparticlenovelnovel strategiespreventpublic health relevancetwo-dimensional
项目摘要
DESCRIPTION (provided by applicant): The development of approaches for multidimensional integration of functional electronic components with biological tissue and organs could have tremendous impact in regenerative medicine, smart prosthetics, and human-machine interfaces. However, current electronic devices and systems are inherently two dimensional and rigid, thus prohibiting seamless meshing with three-dimensional, soft biology. The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs for restoring impairments, or enhancing human functionalities over their natural limitations. Current electronics are inherently two-dimensional, preventing seamless integration with biology, as the processes and materials used to create synthetic tissue constructs vs. conventional electronic devices are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with various classes of functional electronic nanomaterials. Recently, we have generated a functional bionic ear via 3D printing of a cell-seeded hydrogel matrix in the precise anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for the in vitro culturing of cartilage tissue around an inductive coil antenna in the ear,
which subsequently connects to cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo music. Here, we propose extending this approach to new functionalities - such as ultrasonic acoustic reception and vasculature - and bionic organs, including bionic eyes and a bionic nose. Overall, our approach presents a disruptive and paradigm-shifting new method to intricately merge biology and electronics via 3D printing. The work outlined here thus constitutes a novel, highly interdisciplinary investigation to addressing outstanding questions in the generation of bionic organs, and we anticipate that this work will represent a paradigm-shift in both tissue engineering, as well as 3D interweaving of functional electronics into biological systems.
描述(由申请人提供):功能电子元件与生物组织和器官多维集成的方法的开发可能会对再生医学、智能假肢和人机界面产生巨大影响。然而,当前的电子设备和系统本质上是二维的和刚性的,因此无法与三维的软生物学无缝啮合。将生物组织与功能电子器件进行三维交织的能力可以创建仿生器官来恢复损伤,或增强人类功能以超越其自然限制。当前的电子产品本质上是二维的,无法与生物学无缝集成,因为用于创建合成组织结构的工艺和材料与传统电子设备非常不同。在这里,我们提出了一种新策略,通过使用各类功能电子纳米材料增材制造生物细胞来克服这些困难。最近,我们通过 3D 打印在人耳精确的解剖几何结构中植入细胞的水凝胶基质,以及由注入的银纳米粒子组成的交织导电聚合物,生成了功能性仿生耳。这使得可以在耳朵中的感应线圈天线周围进行软骨组织的体外培养,
随后连接到耳蜗形电极。印刷耳朵表现出增强的射频接收听觉感应,互补的左耳和右耳可以聆听立体声音乐。在这里,我们建议将这种方法扩展到新的功能——例如超声波接收和脉管系统——以及仿生器官,包括仿生眼睛和仿生鼻子。总的来说,我们的方法提出了一种颠覆性的、范式转变的新方法,通过 3D 打印将生物学和电子学错综复杂地融合在一起。因此,这里概述的工作构成了一项新颖的、高度跨学科的研究,旨在解决仿生器官生成中的突出问题,我们预计这项工作将代表组织工程以及功能电子学与生物器官的 3D 交织的范式转变。系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael McAlpine其他文献
Michael McAlpine的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael McAlpine', 18)}}的其他基金
Extracellular matrix regulation of differentiation via modulation of ILK: application to 3D bioprinting of cardiac tissue
通过调节 ILK 进行细胞外基质分化调节:在心脏组织 3D 生物打印中的应用
- 批准号:
9301966 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Extracellular matrix regulation of differentiation via modulation of ILK: application to 3D bioprinting of cardiac tissue
通过调节 ILK 进行细胞外基质分化调节:在心脏组织 3D 生物打印中的应用
- 批准号:
10001078 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
相似国自然基金
鼓泡床密相区温度、颗粒浓度与气泡分布的二维同步声学双参数成像
- 批准号:62301355
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非厄米声学晶格系统中的拓扑物理研究
- 批准号:12374418
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
多孔声学超材料宏微观结构耦合强化吸声机制与多尺度结构设计技术
- 批准号:52375122
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
轨道模式依赖的声学拓扑态及其应用研究
- 批准号:12304492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学拓扑安德森绝缘体拓扑特性研究
- 批准号:12304486
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Wearable Wireless Respiratory Monitoring System that Detects and Predicts Opioid Induced Respiratory Depression
可穿戴无线呼吸监测系统,可检测和预测阿片类药物引起的呼吸抑制
- 批准号:
10784983 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Determining reliability and efficacy of intraoperative sensors to reduce structural damage during cochlear implantation
确定术中传感器的可靠性和有效性,以减少人工耳蜗植入期间的结构损伤
- 批准号:
10760827 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Development of a multifunctional, acoustofluidic 3D bioprinter with single-cell resolution
开发具有单细胞分辨率的多功能声流控 3D 生物打印机
- 批准号:
10340194 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Development of a multifunctional, acoustofluidic 3D bioprinter with single-cell resolution
开发具有单细胞分辨率的多功能声流控 3D 生物打印机
- 批准号:
10596518 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别: