Radiomic phenotypes of breast parenchyma and association with breast cancer risk and detection

乳腺实质的放射组学表型及其与乳腺癌风险和检测的关联

基本信息

  • 批准号:
    9897495
  • 负责人:
  • 金额:
    $ 63.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-04-01 至 2022-03-31
  • 项目状态:
    已结题

项目摘要

The `intrinsic' heterogeneity of breast tissue, reflected in texture and spatial composition on the mammogram, may provide independent but complementary information to breast density for the assessment of both risk of breast cancer (BC) and masking that can lead to a missed BC on screening mammography. This may be especially important for the 40-50% of women with dense breasts who need improved risk stratification. We have developed automated methods to quantitatively measure parenchymal complexity features from full field digital mammograms (FFDM) using an innovative lattice-based approach to comprehensively characterize parenchymal tissue heterogeneity on the mammogram. Using unsupervised clustering applied to features measured from 2000 screen-FFDM, we found evidence for four reproducible `intrinsic' parenchymal complexity phenotypes that independently contributed to BC risk, accounting for breast density. In this proposal, we will expand this set of parenchymal features, classify and validate parenchymal phenotypes generalizable to multiple racial/ethnic groups, and examine their association with BC risk and masking. In AIM1, we will characterize and validate parenchymal complexity phenotypes reflecting the `intrinsic' heterogeneity of the breast parenchyma. We will use established automated algorithms to measure features representing statistical and structural properties of parenchymal heterogeneity on 36,000 screen-FFDM sampled from three large multi-ethnic mammography cohorts. We will use hierarchical clustering methods, and a split-sample approach, to first classify, and then independently validate a robust set of distinct parenchymal phenotypes among all breast density categories and specifically for dense breasts. In AIM 2, we will examine the association of parenchymal complexity phenotypes with risk for invasive BC. We will measure these parenchymal features on screen-FFDM performed within five years prior to diagnosis from 3817 incident invasive cancer cases and 7634 matched controls, and classify them into the parenchymal phenotypes from Aim 1. We will examine their association with BC (both across all levels of density and dense breasts only) adjusting for established risk factors and breast density. Finally, in AIM 3, we will examine the contribution of parenchymal complexity phenotypes to masking invasive BC. We will examine whether parenchymal phenotypes are associated with interval vs. screen-detected cancers, compared to true-negative controls, using the case-control study in AIM 2. AIMS 1 and 2 will also be tested within a subset of women with available digital breast tomosynthesis (DBT) exams (N=300 invasive BC), to inform the translation of our results to the emerging DBT technology. Our proposal capitalizes on experienced investigators, productive collaborations, novel algorithms, and established, well-characterized cohorts and will elucidate novel parenchymal phenotypes that can improve our ability to define subsets of women at differential BC risk and increased risk of missed BC. Our study will ultimately pave the way for more effective, tailored BC screening and prevention approaches.
乳腺组织的“内在”异质性,反映在乳房X线照片上的质地和空间组成中, 可以为乳房密度提供独立但互补的信息,以评估这两种风险 乳腺癌(BC)和掩饰可能导致乳房X线摄影片中错过BC。这可能是 对于需要改善风险分层的乳房密集的女性中,有40-50%的妇女尤其重要。我们 已经开发了自动化方法来定量测量实质复杂性特征 使用基于创新的晶格的方法全面表征现场数字乳房X线照片(FFDM) 乳房X线照片上实质性组织异质性。使用无监督的聚类应用于功能 从2000屏幕-FFDM测量,我们发现了四个可再现的“内在”实质复杂性的证据 独立促成BC风险的表型,考虑到乳房密度。在此提案中,我们将 扩展这套实质特征,对可推广到的实质表型进行分类和验证 多个种族/族裔群体,并检查他们与卑诗省风险和掩盖的关联。在AIM1中,我们将 表征和验证实质复杂性表型,反映了固有的”异质性 乳房实质。我们将使用已建立的自动化算法来测量代表的功能 从三个屏幕范围的36,000个屏幕FFDM中取样的实质异质性的统计和结构特性 大型多民族乳房X线摄影队列。我们将使用分层聚类方法和一个分式样本 方法,首先分类,然后独立验证一组可靠的不同实质表型 在所有乳房密度类别中,专门针对密集的乳房。在AIM 2中,我们将检查 实质复杂性表型与侵入性BC风险的关联。我们将衡量这些 3817事件的诊断前五年内执行的屏幕FFDM实质特征 侵入性癌症病例和7634例匹配对照,并将其分类为实质表型 AIM 1。我们将检查它们与BC的关联(既在所有密度和密集的乳房中) 调整已建立的危险因素和乳房密度。最后,在AIM 3中,我们将研究贡献 掩盖侵入性BC的实质复杂性表型。我们将检查实质是否 与真实阴性对照组相比,表型与间隔与屏幕检测的癌症有关, 在AIM 2中使用案例对照研究。AIMS 1和2也将在可用的女性子集中进行测试 数字乳房合成(DBT)考试(n = 300侵入性BC),以告知我们的结果转化为 新兴DBT技术。我们的提案大写了经验丰富的研究人员,生产性合作, 新颖的算法,并建立了良好的人群,并将阐明新型实质表型 这可以提高我们定义以差异BC风险定义女性子集的能力,并增加了卑诗省错过的风险。 我们的研究最终将为更有效,量身定制的BC筛查和预防方法铺平道路。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KARLA M KERLIKOWSKE其他文献

KARLA M KERLIKOWSKE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KARLA M KERLIKOWSKE', 18)}}的其他基金

Hawaii Pacific Islands Mammography Registry
夏威夷太平洋岛屿乳腺X线摄影登记处
  • 批准号:
    10819068
  • 财政年份:
    2023
  • 资助金额:
    $ 63.26万
  • 项目类别:
Hawaii Pacific Islands Mammography Registry
夏威夷太平洋岛屿乳腺X线摄影登记处
  • 批准号:
    10588112
  • 财政年份:
    2023
  • 资助金额:
    $ 63.26万
  • 项目类别:
Evaluation of novel tomosynthesis density measures in breast cancer risk prediction
新型断层合成密度测量在乳腺癌风险预测中的评价
  • 批准号:
    10680241
  • 财政年份:
    2023
  • 资助金额:
    $ 63.26万
  • 项目类别:
New Risk Assessment Paradigm to Predict Screening Detection, Failures and False Alarms
新的风险评估范式可预测筛查检测、故障和误报
  • 批准号:
    9982825
  • 财政年份:
    2020
  • 资助金额:
    $ 63.26万
  • 项目类别:
New Risk Assessment Paradigm to Predict Screening Detection, Failures and False Alarms
新的风险评估范式可预测筛查检测、故障和误报
  • 批准号:
    9279002
  • 财政年份:
    2017
  • 资助金额:
    $ 63.26万
  • 项目类别:
Automated Density Measures for Estimating Breast Cancer Risk and Therapy Response
用于估计乳腺癌风险和治疗反应的自动密度测量
  • 批准号:
    8601620
  • 财政年份:
    2013
  • 资助金额:
    $ 63.26万
  • 项目类别:
Automated Density Measures for Estimating Breast Cancer Risk and Therapy Response
用于估计乳腺癌风险和治疗反应的自动密度测量
  • 批准号:
    8913697
  • 财政年份:
    2013
  • 资助金额:
    $ 63.26万
  • 项目类别:
Automated Density Measures for Estimating Breast Cancer Risk and Therapy Response
用于估计乳腺癌风险和治疗反应的自动密度测量
  • 批准号:
    8693976
  • 财政年份:
    2013
  • 资助金额:
    $ 63.26万
  • 项目类别:
Automated Density Measures for Estimating Breast Cancer Risk and Therapy Response
用于估计乳腺癌风险和治疗反应的自动密度测量
  • 批准号:
    9120340
  • 财政年份:
    2013
  • 资助金额:
    $ 63.26万
  • 项目类别:
Advancing Equitable Risk-based Breast Cancer Screening and Surveillance in Community Practice
在社区实践中推进基于风险的公平乳腺癌筛查和监测
  • 批准号:
    10411220
  • 财政年份:
    2011
  • 资助金额:
    $ 63.26万
  • 项目类别:

相似国自然基金

无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
  • 批准号:
    62372118
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向年龄相关性黄斑变性诊断的迁移学习算法研究
  • 批准号:
    62371328
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于信息年龄的自组网分布式及时信息调度算法研究
  • 批准号:
    62102232
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
异质动态网络上年龄结构传染病模型及算法研究
  • 批准号:
    11701348
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
视网膜年龄相关性黄斑病变OCT图像的三维分割算法研究
  • 批准号:
    61401294
  • 批准年份:
    2014
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
  • 批准号:
    10590913
  • 财政年份:
    2023
  • 资助金额:
    $ 63.26万
  • 项目类别:
Fair risk profiles and predictive models for outcomes of obstructive sleep apnea through electronic medical record data
通过电子病历数据对阻塞性睡眠呼吸暂停结果进行公平的风险概况和预测模型
  • 批准号:
    10678108
  • 财政年份:
    2023
  • 资助金额:
    $ 63.26万
  • 项目类别:
Elucidating the ancestry-specific genetic and environmental architecture of cardiometabolic traits across All of Us ethnic groups
阐明我们所有种族群体心脏代谢特征的祖先特异性遗传和环境结构
  • 批准号:
    10796028
  • 财政年份:
    2023
  • 资助金额:
    $ 63.26万
  • 项目类别:
Resilient Emotion Regulation Development in a South African Birth Cohort
南非出生队列的弹性情绪调节发展
  • 批准号:
    10656016
  • 财政年份:
    2023
  • 资助金额:
    $ 63.26万
  • 项目类别:
Health and Financial Costs of Unequal Care: Colorectal Cancer as a Case Study
不平等护理的健康和财务成本:结直肠癌案例研究
  • 批准号:
    10656807
  • 财政年份:
    2023
  • 资助金额:
    $ 63.26万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了