The effects of amyloid beta on pericyte remodeling and brain capillary function in vivo
β淀粉样蛋白对体内周细胞重塑和脑毛细血管功能的影响
基本信息
- 批准号:9898221
- 负责人:
- 金额:$ 23.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2022-01-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAddressAdultAffectAgeAgingAlzheimer&aposs DiseaseAmyloidAmyloid beta-ProteinAmyloid depositionBasic ScienceBiologyBloodBlood - brain barrier anatomyBlood CellsBlood VesselsBlood capillariesBlood flowBrainCaliberCellsCerebral Amyloid AngiopathyCerebrovascular CirculationCerebrovascular DisordersCessation of lifeCommunicationCrossbreedingDataDefectDepositionDevelopmentDisease ProgressionEndothelial CellsEndotheliumExhibitsFutureHealthHumanImageImpairmentInjuryKnowledgeLabelLeadLightMaintenanceMeasuresMicroscopyMicrovascular DysfunctionMusNerve DegenerationOpticsOxygenPartial PressurePathologyPericytesPhysiologicalProcessResolutionRoleShapesSpecificityStretchingStructureSurfaceTestingTheftTimeTissuesUnited StatesVascular DementiaVascular SystemVascular blood supplyVisualizationabeta depositionage effectagedblood-brain barrier permeabilizationbrain remodelingcapillary bedcell typecerebral capillarydesignexperimental groupin vivoin vivo imagingin vivo optical imaginginsightmiddle agemouse modelnervous system disordernovelnovel strategiespre-clinicalpreservationrepairedresponsesocioeconomicstherapeutic developmenttherapeutic targettissue oxygenationtooltwo photon microscopytwo-photonyoung adult
项目摘要
Project Summary
Brain capillaries are composed of a single layer of endothelial cells covered by specialized mural cells called
pericytes. Communication between pericytes and endothelial cells is essential for brain capillary health. Recent
studies indicate that Alzheimer’s disease and vascular dementia involve increased death or degeneration of
brain pericytes. This is thought to contribute to the impairment of both blood-brain barrier integrity and cerebral
blood flow, which subsequently exacerbates neurodegeneration. Therefore, strategies to mitigate or
compensate for loss of pericyte coverage may help to preserved vascular function in these neurological
diseases. We recently discovered that brain pericytes have the ability to structurally remodel in the adult brain.
In response to focal ablation of single pericytes in vivo, we observed the robust extension of processes from
neighboring pericytes, which could reach over large stretches of capillary bed to regain contact with the
exposed endothelium. In young healthy mice, the transient loss of pericyte coverage led to persistent capillary
dilation and abnormally high blood cell flux, until pericyte contact was regained. These findings suggest that
pericyte remodeling is a reparative mechanism to compensate for pericyte loss. We hypothesize that this
capacity is diminished with age and further impaired with amyloid deposition during cerebral amyloid
angiopathy, a frequent small vessel disease in Alzheimer’s. To address this hypothesis, we plan to use in vivo
two-photon microscopy to directly observe pericytes dynamics in normal mice and mice with cerebral amyloid
angiopathy. In Aim 1, we will test whether remodeling capacity is reduced in young and aged Tg-SwDI mice,
which exhibit a unique enrichment of capillary amyloid deposits over time. In Aim 2, we will use a novel
oxygen-sensitive probe designed for two-photon imaging to better understand the consequence of pericyte
loss on blood flow and local tissue oxygenation. This project will shed light on a largely unstudied facet of
pericyte biology that may lead to novel approaches to augment pericyte-endothelial contact and preserve brain
capillary health in Alzheimer’s disease. It will advance the field by: 1) Characterizing the dynamics of pericyte
remodeling in detail using in vivo optical imaging, 2) providing insight on how small vessel disease impairs the
reparative capacity of brain capillaries, and 3) promoting the development of new tools to study pericytes with
unprecedented specificity in the living mouse brain.
项目摘要
脑毛细血管由单层的内皮细胞组成,该细胞被专门的壁画细胞覆盖
周细胞。周细胞和内皮细胞之间的通信对于脑毛细血管健康至关重要。最近的
研究表明,阿尔茨海默氏病和血管性痴呆涉及增加的死亡或变性
脑周细胞。人们认为这会导致血脑屏障完整性和大脑的损害
血流,随后加剧了神经变性。因此,减轻或
补偿周细胞覆盖范围的损失可能有助于保留这些神经系统的血管功能
疾病。我们最近发现,大脑时期具有在成人大脑中进行结构重塑的能力。
响应于体内单个周细胞的局部消融,我们观察到了从
附近的周细胞,可以在大片毛细管床上到达,以恢复与
暴露的内皮。在年轻的健康小鼠中,周细胞覆盖范围的短暂损失导致了持续的毛细管
扩张和绝对的高血细胞通量,直到持续过血管接触。这些发现表明
周细胞重塑是补偿周细胞损失的一种修复机制。我们假设这是
脑淀粉样蛋白期间的淀粉样蛋白沉积会随着年龄的增长而降低能力,并进一步受损
血管病,阿尔茨海默氏症经常是小血管疾病。为了解决这一假设,我们计划在体内使用
两光子显微镜直接观察正常小鼠和脑淀粉样蛋白的小鼠周细胞动力学
血管病。在AIM 1中,我们将测试年轻和老年TG-SWDI小鼠的重塑能力是否降低,
随着时间的流逝,它表现出独特的毛细血管淀粉样蛋白沉积物的富集。在AIM 2中,我们将使用小说
氧气敏感的探针专为两光子成像设计,以更好地了解周细胞的后果
血流和局部组织氧合的损失。该项目将揭示在很大程度上未研究的方面
周围生物学可能导致新颖的方法来增强周细胞 - 内皮接触并保存大脑
阿尔茨海默氏病的毛细血管健康。它将通过:1)表征浮游动力学来推进磁场
使用体内光学成像进行详细的重塑,2)提供有关小血管疾病如何损害的见解
脑毛细血管的修复能力,以及3)促进开发新工具以研究周细胞
活小鼠大脑中空前的特异性。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andy Y Shih其他文献
Andy Y Shih的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andy Y Shih', 18)}}的其他基金
In vivo two-photon imaging of vascular invasion and stem cell translocation in calvarial bone
颅骨血管侵袭和干细胞易位的体内双光子成像
- 批准号:
10603163 - 财政年份:2023
- 资助金额:
$ 23.25万 - 项目类别:
Pericyte control of capillary perfusion in the Alzheimer's disease brain
阿尔茨海默病大脑中毛细血管灌注的周细胞控制
- 批准号:
10655813 - 财政年份:2023
- 资助金额:
$ 23.25万 - 项目类别:
Brain Drain: In Vivo Optical Interrogation of Venular Function in Gray and White Matter
脑流失:灰质和白质中小静脉功能的体内光学询问
- 批准号:
10463455 - 财政年份:2022
- 资助金额:
$ 23.25万 - 项目类别:
Pericyte structural plasticity and cerebrovascular health
周细胞结构可塑性与脑血管健康
- 批准号:
10374139 - 财政年份:2020
- 资助金额:
$ 23.25万 - 项目类别:
Pericyte structural plasticity and cerebrovascular health
周细胞结构可塑性与脑血管健康
- 批准号:
10163765 - 财政年份:2020
- 资助金额:
$ 23.25万 - 项目类别:
Pericyte structural plasticity and cerebrovascular health
周细胞结构可塑性与脑血管健康
- 批准号:
9894994 - 财政年份:2020
- 资助金额:
$ 23.25万 - 项目类别:
Pericyte structural plasticity and cerebrovascular health
周细胞结构可塑性与脑血管健康
- 批准号:
10576299 - 财政年份:2020
- 资助金额:
$ 23.25万 - 项目类别:
Pericyte structural plasticity and cerebrovascular health
周细胞结构可塑性与脑血管健康
- 批准号:
10783214 - 财政年份:2020
- 资助金额:
$ 23.25万 - 项目类别:
Optical Interrogation of Venular Function in Cerebral Gray and White Matter
大脑灰质和白质中静脉功能的光学询问
- 批准号:
10221601 - 财政年份:2020
- 资助金额:
$ 23.25万 - 项目类别:
Diversity Supplement: Pericyte structural plasticity and cerebrovascular health
多样性补充:周细胞结构可塑性与脑血管健康
- 批准号:
10605744 - 财政年份:2020
- 资助金额:
$ 23.25万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigating the coordinated endothelial-epithelial interactions in adult hair cycle of mouse skin
研究小鼠皮肤成年毛发周期中协调的内皮-上皮相互作用
- 批准号:
10674132 - 财政年份:2023
- 资助金额:
$ 23.25万 - 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 23.25万 - 项目类别:
The Role of Bone Sialoprotein in Modulating Periodontal Development and Repair
骨唾液酸蛋白在调节牙周发育和修复中的作用
- 批准号:
10752141 - 财政年份:2023
- 资助金额:
$ 23.25万 - 项目类别:
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 23.25万 - 项目类别:
LRP1 as a novel regulator of CXCR4 in adult neural stem cells and post-stroke response
LRP1 作为成体神经干细胞和中风后反应中 CXCR4 的新型调节剂
- 批准号:
10701231 - 财政年份:2023
- 资助金额:
$ 23.25万 - 项目类别: