Multi-parametric 4-D Imaging Biomarkers for Neoadjuvant Treatment Response
新辅助治疗反应的多参数 4-D 成像生物标志物
基本信息
- 批准号:9895669
- 负责人:
- 金额:$ 48.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-19 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:4D ImagingAddressAmerican College of Radiology Imaging NetworkAnatomyBiological MarkersBreastCancer BurdenCharacteristicsComplexComputer softwareDataDescriptorDiffuseDiseaseDisease-Free SurvivalGene ExpressionHeterogeneityHot SpotImageIn complete remissionKineticsKnowledge DiscoveryLesionMRI ScansMachine LearningMagnetic Resonance ImagingMapsMeasuresMethodsModelingMonitorMorphologyNeoadjuvant TherapyNormal tissue morphologyOperative Surgical ProceduresPathologicPatient-Focused OutcomesPatternPerformancePhenotypePhysiologicalPlayPrediction of Response to TherapyPredictive ValuePropertyRegistriesResidual CancersRoleScanningSignal TransductionSoft Tissue NeoplasmsStructureTestingTextureTimeTissuesTrainingTraining SupportTreatment outcomeTumor ExpansionTumor MarkersTumor SubtypeTumor TissueTumor VolumeUnited States National Institutes of HealthVisitWomanangiogenesisarmbasebreast imagingchemotherapycomputerized toolsexperimental armfallsfeature extractionfollow-uphigh dimensionalityimage registrationimaging biomarkerimaging studyimprovedindexingindividual patientindividualized medicinemachine learning methodmalignant breast neoplasmmolecular markermultimodalitynew therapeutic targetnovelopen sourcepersonalized medicinepredicting responsepredictive markerpredictive modelingpublic health relevancereceptorresponsesecondary endpointserial imagingspatiotemporalsupport vector machinetooltreatment effecttreatment responsetumortumor heterogeneity
项目摘要
DESCRIPTION (provided by applicant): Imaging plays a critical role in evaluating tumor response to treatment; however the currently used methods remain significantly limited. For example, standards such as the RECIST are subjective and cannot be used to adequately characterize irregular lesions; tumor volume measures alone do not account for detailed structural changes; and features from selected tumor regions, such as "hot-spot" peak-enhancement, do not capture information from the entire tumor. As such, current approaches fall short of capturing the multi-faceted effects of treatment, including phenotypic tumor heterogeneity and its longitudinal change during treatment, which is increasingly recognized as an important predictive indicator. To date, few studies have explored using richer imaging descriptors, which could result in more powerful predictive markers. Moreover, fewer have attempted to combine multi-modal biomarkers, such as imaging with histopathologic and molecular markers, to develop enhanced predictive models for specific tumor sub-types and individual patients. We propose to develop advanced computational tools that will enable to i) extract novel multi-parametric imaging signatures and ii) accurately characterize their longitudinal patterns of change during neoadjuvant treatment via deformable image registration. Our approach is thus geared towards knowledge discovery, for determining which imaging parameters have the highest predictive value out of many possible ways to quantify information provided by imaging. In SA1 we will develop robust 4D deformable image registration methods, based on principles of mutual saliency, for estimating transformations that will enable us to robustly register serial imaging scans and obtain anatomically precise spatio-temporal parametric maps of longitudinal tissue effects induced by treatment. In SA2 we will analyze whole-tumor and normal tissue effects by performing multi- parametric feature extraction, including a rich set of morphologic, textural, kinetic and parenchymal tissue descriptors, which in
conjunction to registration will allow us to comprehensively capture the dynamically evolving imaging phenotype during treatment. In SA3 we will test our method in a major breast imaging study, the I-SPY 1/ACRIN 6657 trial. We will apply machine learning tools to identify high-dimensional associations of imaging patterns, in conjunction to histopathologic tumor subtyping, that can best predict pathologic complete response (pCR) and 5-year disease free survival (DFS). In SA4 we will independently test our models with the I-SPY 2/ACRIN 6698 trial, where we will also evaluate the robustness of our features to a diverse range of treatments. Our methods hold the promise to shift the current paradigm in personalizing neoadjuvant treatment by 1) improving the current standards of imaging-based assessment and 2) introducing new imaging biomarkers that can be of higher value as early predictors of treatment response and survival. Our tools will be shared as open-source software via NIH/NCI tool registries and open-challenge activities.
描述(由适用提供):成像在评估肿瘤对治疗的反应中起着至关重要的作用;但是,当前使用的方法仍然显着有限。例如,诸如recist之类的标准是主观的,不能用来充分表征不规则的病变。仅肿瘤体积测量不能说明详细的结构变化;以及所选肿瘤区域的特征,例如“热点”峰值增强,不会从整个肿瘤中捕获信息。因此,当前的方法无法捕获治疗的多方面影响,包括表型肿瘤异质性及其在治疗过程中的纵向变化,这越来越被认为是重要的预测指标。迄今为止,很少有研究使用更丰富的成像描述符探索,这可能会导致更强大的预测标记。此外,更少的尝试将多模式生物标志物(例如成像与组织病理学和分子标记)相结合,以开发针对特定肿瘤亚型和个体患者的增强预测模型。我们建议开发先进的计算工具,以使i)提取新颖的多参数成像特征,ii)ii)准确地表征了他们在新辅助处理期间通过可变形图像注册的纵向变化模式。因此,我们的方法是针对知识发现的,用于确定哪些成像参数具有最高的预测价值,以量化成像提供的信息。在SA1中,我们将基于相互级别的原理开发可靠的4D可变形图像登记方法,用于估算转化,这将使我们能够稳健地注册序列成像扫描并获得由治疗所指出的纵向组织效应的解剖学上精确的时空参数图。在SA2中,我们将通过进行多参数特征提取来分析全肿瘤和正常组织效应
注册的结合将使我们能够在治疗过程中全面捕获动态发展的成像表型。在SA3中,我们将在一项主要的乳房成像研究中测试我们的方法I-SPY 1/ACRIN 6657试验。我们将应用机器学习工具来确定成像模式的高维关联,并结合组织病理学肿瘤亚型,可以最好地预测病理完全反应(PCR)和5年无疾病生存(DFS)。在SA4中,我们将通过I-SPY 2/ACRIN 6698试验独立测试我们的模型,在那里我们还将评估我们的特征对潜水员治疗范围的鲁棒性。我们的方法有望通过1)提高基于成像的评估的当前标准以及2)引入新成像生物标志物的当前范例来转移当前的新辅助治疗,以提高当前的标准,这些新成像生物标志物可以作为治疗反应和生存的早期预测指标和生存的早期预测指标。我们的工具将通过NIH/NCI工具注册表和开放式挑战活动作为开源软件共享。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Expert tumor annotations and radiomics for locally advanced breast cancer in DCE-MRI for ACRIN 6657/I-SPY1.
- DOI:10.1038/s41597-022-01555-4
- 发表时间:2022-07-23
- 期刊:
- 影响因子:9.8
- 作者:Chitalia, Rhea;Pati, Sarthak;Bhalerao, Megh;Thakur, Siddhesh Pravin;Jahani, Nariman;Belenky, Vivian;McDonald, Elizabeth S.;Gibbs, Jessica;Newitt, David C.;Hylton, Nola M.;Kontos, Despina;Bakas, Spyridon
- 通讯作者:Bakas, Spyridon
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Despina Kontos其他文献
Despina Kontos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Despina Kontos', 18)}}的其他基金
MRI Radiomic Signatures of DCIS to Optimize Treatment
DCIS 的 MRI 放射学特征可优化治疗
- 批准号:
10537149 - 财政年份:2022
- 资助金额:
$ 48.68万 - 项目类别:
MRI Radiomic Signatures of DCIS to Optimize Treatment
DCIS 的 MRI 放射学特征可优化治疗
- 批准号:
10655641 - 财政年份:2022
- 资助金额:
$ 48.68万 - 项目类别:
Multi-parametric 4-D Imaging Biomarkers for Neoadjuvant Treatment Response
新辅助治疗反应的多参数 4-D 成像生物标志物
- 批准号:
9106459 - 财政年份:2016
- 资助金额:
$ 48.68万 - 项目类别:
Breast tomosynthesis texture-based segmentation for volumetric density estimation
用于体积密度估计的基于乳房断层合成纹理的分割
- 批准号:
8442279 - 财政年份:2012
- 资助金额:
$ 48.68万 - 项目类别:
Effect of Breast Density on Screening Recall with Digital Breast Tomosynthesis
乳房密度对数字乳房断层合成筛查回忆的影响
- 批准号:
8303845 - 财政年份:2012
- 资助金额:
$ 48.68万 - 项目类别:
Breast tomosynthesis texture-based segmentation for volumetric density estimation
用于体积密度估计的基于乳房断层合成纹理的分割
- 批准号:
8248953 - 财政年份:2012
- 资助金额:
$ 48.68万 - 项目类别:
Effect of Breast Density on Screening Recall with Digital Breast Tomosynthesis
乳房密度对数字乳房断层合成筛查回忆的影响
- 批准号:
8831453 - 财政年份:2012
- 资助金额:
$ 48.68万 - 项目类别:
Effect of Breast Density on Screening Recall with Digital Breast Tomosynthesis
乳房密度对数字乳房断层合成筛查回忆的影响
- 批准号:
8465846 - 财政年份:2012
- 资助金额:
$ 48.68万 - 项目类别:
Effect of Breast Density on Screening Recall with Digital Breast Tomosynthesis
乳房密度对数字乳房断层合成筛查回忆的影响
- 批准号:
8643193 - 财政年份:2012
- 资助金额:
$ 48.68万 - 项目类别:
Digital breast tomosynthesis imaging biomarkers for breast cancer risk estimation
用于乳腺癌风险评估的数字乳腺断层合成成像生物标志物
- 批准号:
9899935 - 财政年份:2012
- 资助金额:
$ 48.68万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The FYI on MRI: A Multilevel Decision Support Intervention for Screening Breast MRI
MRI 仅供参考:用于筛查乳腺 MRI 的多级决策支持干预措施
- 批准号:
10591106 - 财政年份:2023
- 资助金额:
$ 48.68万 - 项目类别:
NCI Research Specialist (Clinician Scientist) Award
NCI 研究专家(临床科学家)奖
- 批准号:
10569403 - 财政年份:2023
- 资助金额:
$ 48.68万 - 项目类别:
Increasing Participation in NCI-Funded Clinical Trials at Winship Cancer Institute
增加对温希普癌症研究所 NCI 资助的临床试验的参与
- 批准号:
10721093 - 财政年份:2023
- 资助金额:
$ 48.68万 - 项目类别:
“NCI National Clinical Trials Network - Network Lead Academic Participating Sites”
–NCI 国家临床试验网络 - 网络主导学术参与站点 –
- 批准号:
10734623 - 财政年份:2022
- 资助金额:
$ 48.68万 - 项目类别:
Proteogenomic studies to understand mechanisms and drivers of resistance to immunotherapies
蛋白质组学研究以了解免疫疗法耐药的机制和驱动因素
- 批准号:
10647807 - 财政年份:2022
- 资助金额:
$ 48.68万 - 项目类别: