MOLECULAR MECHANISMS OF RETINAL CIRCUIT ASSEMBLY
视网膜电路组装的分子机制
基本信息
- 批准号:9894802
- 负责人:
- 金额:$ 38.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAffectAmacrine CellsAxonBehaviorBehavior ControlBehavioralBehavioral AssayCell Adhesion MoleculesCell CountCellsComplexDataDegenerative DisorderDendritesDetectionDevelopmentEnsureEventEye MovementsGene DeliveryGeometryGrowthHead MovementsImageIntuitionKnock-outKnowledgeLateralLightLinkMeasuresMediatingMolecularMorphogenesisMorphologyMotionMusNeuritesNeurodegenerative DisordersNeurodevelopmental DisorderNeuronsOutputPathway interactionsPatternPeripheralPhotophobiaRadialRetinaRodRoleShapesSignal TransductionSynapsesTestingVariantVisionVisualaxon growthbasebehavioral responsecell typefunctional restorationganglion cellhorizontal cellinsightinterdisciplinary approachmulti-electrode arraysnetrin-G1neurite growthneuronal circuitryneuronal replacementpatch clamppostsynapticpresynapticreceptive fieldreconstructionresponseretinal neuronretinal rodsstarburststarburst amacrine cellsynaptic functionsynaptogenesistwo-photonvisual threshold
项目摘要
The morphology of axons and dendrites shapes the connectivity and function of neuronal circuits; and
dysmorphic axons and dendrites are a common feature of neurodevelopmental disorders. To establish cell-type-specific morphologies, developing neurites need to (1) grow towards and branch in the right places (i.e. neurite
targeting), (2) elaborate arbors with distinct branching patterns and geometries (i.e. neurite shape), and (3)
occupy appropriate territories (i.e. neurite size). How axons and dendrites grow to an exact size, how arbor size
regulates connectivity, and how it influences specific circuit computations is not well understood. In preliminary
studies, we identified four cell adhesion molecules (CAMs; Amigo1, Amigo2, netrin-G1, and NGL1) that regulate
dendrite and axon size of neurons in two circuits of the retina: the direction selective (DS) circuit, which extracts
motion information in the inner retina, and the rod bipolar pathway, which transmits dim-light-signals from the
outer to the inner retina. Starburst cells have radially symmetric arbors that overlap extensively among neighbors
and express Amigo2. The central two thirds of each arbor receive input and the peripheral third provides output.
Inhibitory input from starburst cells is critical for DS responses of ganglion cells. Neurite size of starburst cells is
increased in Amigo2 knockout (Amigo2-/-) mice, while functional compartmentalization is maintained. In Aim 1,
we will analyze the molecular mechanisms of Amigo2’s actions, test its influence on neurite morphology and
connectivity, DS circuit function, and image stabilizing head and eye movements. At the first stage of the rod
bipolar pathway, horizontal cell axons mediate lateral inhibition among rods, which provide input to rod bipolar
dendrites. Horizontal cells express Amigo1. In Amigo1-/- mice, horizontal cell axons and rod bipolar dendrites are
both reduced in size. In Aim 2, we will characterize the signaling mechanism of Amigo1, explore territory
matching between synaptic partners, analyze effects on connectivity and measure light sensitivity along the rod
bipolar pathway, and in behavioral responses. At the second stage of the rod bipolar pathway, netrin-G1-expressing rod bipolar axons synapse onto NGL1-expressing AII cells. Rod bipolar axon size is reduced in netrin-
G1-/- and NGL1-/- mice, suggesting that retrograde signals of trans-synaptic netrin-G1/NGL1 complexes regulates
axon growth. In Aim 3, we will explore whether forward signals control AII arbor size. We will determine how
netrin-G1/NGL1 complexes affect the number, ultrastructure and function of synapses between rod bipolar and
AII cells, and assess their influences on light responses along the rod bipolar pathway and on the ability of mice
to detect dim light flashes. Together these studies will provide insights into the molecular mechanisms that control
axon and dendrite size in the retina, reveal how neurite size regulates connectivity, and how it shapes specific
circuit computations and influences visually guided behaviors.
轴突和树突的形态塑造了神经元电路的连通性和功能;和
营养不良的轴突和树突是神经发育障碍的常见特征。为了建立细胞型特异性形态,发展神经运动需要(1)在正确的位置生长并分支(即神经蛋白
靶向),(2)具有不同分支模式和几何形状(即神经蛋白的形状)的精心制作的乔木和(3)
占据适当的区域(即神经蛋白酶的大小)。轴突和树突如何生长到确切的尺寸,植物大小
调节连通性及其如何影响特定电路计算的方式尚不清楚。在初步
研究,我们鉴定了四个细胞粘附分子(CAM; Amigo1,Amigo2,Netrin-G1和NGL1),它们调节了
视网膜两个电路中神经元的树突和轴突大小:方向选择性(DS)电路,提取
内部视网膜和杆双极通路中的运动信息,从
外部视网膜外。 Starburst细胞具有根本对称的乔木,在邻居之间广泛重叠
并表达Amigo2。每个乔木的中央三分之二接收输入,外围三分之一提供输出。
Starburst细胞的抑制输入对于神经节细胞的DS反应至关重要。 Starburst细胞的神经突大小为
在维持功能隔室化的同时,Amigo2敲除(Amigo2 - / - )小鼠的增加。在AIM 1中,
我们将分析Amigo2作用的分子机制,检验其对神经怪的形态的影响和
连通性,DS电路功能以及图像稳定头和眼动。在杆的第一阶段
双极途径,水平细胞轴突介导了杆之间的横向抑制,这为杆双极提供了输入
树突。水平细胞表达Amigo1。在Amigo1 - / - 小鼠中,水平细胞轴突和杆双极树突为
两者的大小都降低。在AIM 2中,我们将表征Amigo1的信号传导机制,探索区域
合成伙伴之间的匹配,分析对连通性的影响并测量沿杆的光灵敏度
双极途径和行为反应。在杆双极途径的第二阶段,表达Netrin-G1双极轴突在表达NGL1的AII细胞上。 Netrin-中杆双极轴突尺寸降低
G1 - / - 和NGL1 - / - 小鼠,表明反式突触Netrin-G1/NGL1复合物的逆行信号调节
轴突生长。在AIM 3中,我们将探索向前信号是否控制AII Arbor尺寸。我们将确定如何
Netrin-g1/ngl1复合物影响杆双极与突触的数量,超微结构和功能
AII细胞,并评估它们对沿杆双极途径的光反应的影响以及小鼠的能力
检测昏暗的光闪烁。这些研究将共同提供对控制分子机制的见解
视网膜中的轴突和树突大小,揭示神经蛋白的大小如何调节连通性及其形成特定的连通性
电路计算并影响视觉引导行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Kerschensteiner其他文献
Daniel Kerschensteiner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Kerschensteiner', 18)}}的其他基金
Visual pathway cooperation to align viewing strategies and processing specializations for predation
视觉通路合作,以调整捕食的观察策略和处理专业化
- 批准号:
10467484 - 财政年份:2022
- 资助金额:
$ 38.13万 - 项目类别:
Visual pathway cooperation to align viewing strategies and processing specializations for predation
视觉通路合作,以调整捕食的观察策略和处理专业化
- 批准号:
10599366 - 财政年份:2022
- 资助金额:
$ 38.13万 - 项目类别:
Tools and approaches for functional connectomics of dense neuropils
致密神经细胞功能连接组学的工具和方法
- 批准号:
9980918 - 财政年份:2019
- 资助金额:
$ 38.13万 - 项目类别:
Tools and approaches for functional connectomics of dense neuropils
致密神经细胞功能连接组学的工具和方法
- 批准号:
9809180 - 财政年份:2019
- 资助金额:
$ 38.13万 - 项目类别:
MOLECULAR MECHANISMS OF RETINAL CIRCUIT ASSEMBLY
视网膜电路组装的分子机制
- 批准号:
10132324 - 财政年份:2017
- 资助金额:
$ 38.13万 - 项目类别:
MOLECULAR MECHANISMS OF RETINAL CIRCUIT ASSEMBLY
视网膜电路组装的分子机制
- 批准号:
9217364 - 财政年份:2017
- 资助金额:
$ 38.13万 - 项目类别:
Synapse rescue and neuroprotection in the retina
视网膜突触救援和神经保护
- 批准号:
10608828 - 财政年份:2017
- 资助金额:
$ 38.13万 - 项目类别:
SYNAPTIC ORGANIZATION AND VISUAL PROCESSING IN INTERNEURON CIRCUITS OF THE RETINA
视网膜中间神经元回路中的突触组织和视觉处理
- 批准号:
9337454 - 财政年份:2016
- 资助金额:
$ 38.13万 - 项目类别:
Synaptic Organization and Function of Retinal Interneurons and Downstream Visual Pathways
视网膜中间神经元和下游视觉通路的突触组织和功能
- 批准号:
10388238 - 财政年份:2016
- 资助金额:
$ 38.13万 - 项目类别:
Synaptic Organization and Function of Retinal Interneurons and Downstream Visual Pathways
视网膜中间神经元和下游视觉通路的突触组织和功能
- 批准号:
10595556 - 财政年份:2016
- 资助金额:
$ 38.13万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Transplantation of human stem cell-derived neurons for retinal ganglion cell replacement and optic nerve regeneration.
移植人类干细胞衍生的神经元,用于视网膜神经节细胞替代和视神经再生。
- 批准号:
10469468 - 财政年份:2020
- 资助金额:
$ 38.13万 - 项目类别:
Transplantation of human stem cell-derived neurons for retinal ganglion cell replacement and optic nerve regeneration.
移植人类干细胞衍生的神经元,用于视网膜神经节细胞替代和视神经再生。
- 批准号:
10249198 - 财政年份:2020
- 资助金额:
$ 38.13万 - 项目类别:
Transplantation of human stem cell-derived neurons for retinal ganglion cell replacement and optic nerve regeneration.
移植人类干细胞衍生的神经元,用于视网膜神经节细胞替代和视神经再生。
- 批准号:
10039636 - 财政年份:2020
- 资助金额:
$ 38.13万 - 项目类别:
Imaging spatial and temporal dynamics of retinal ganglion cells
视网膜神经节细胞的时空动态成像
- 批准号:
10132330 - 财政年份:2019
- 资助金额:
$ 38.13万 - 项目类别: