Role of endothelial and progenitor cell bioenergetics-cytoskeletal machinery in diabetic angiopathies
内皮细胞和祖细胞生物能学-细胞骨架机制在糖尿病血管病中的作用
基本信息
- 批准号:9895845
- 负责人:
- 金额:$ 39.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-15 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AblationActinsAddressAdoptive Cell TransfersAreaAttenuatedAutologousBioenergeticsBlood VesselsBlood flowBone MarrowCell Differentiation processCell TherapyCell physiologyCellsCellular Metabolic ProcessClinicClinicalComplicationCytoskeletonDataDefectDeteriorationDiabetes MellitusDiabetic AngiopathiesDiabetic mouseDiseaseDisease ProgressionEndothelial CellsEndotheliumEnergy MetabolismEnergy SupplyEtiologyExposure toFailureGene DeliveryGeneticGenetic TranscriptionGlycolysisGlycolysis InhibitionGoalsHealthHeartHindlimbHumanImpairmentInnovative TherapyInsulin-Dependent Diabetes MellitusInterventionIschemiaKnockout MiceKnowledgeLinkMediatingMediator of activation proteinMetabolicMitochondriaModelingMusNon-Insulin-Dependent Diabetes MellitusPPAR gammaPathway interactionsProcessRNA InterferenceReactive Oxygen SpeciesRecoveryRegulationRegulator GenesResistanceRoleSignal TransductionSkin wound healingStem cell transplantStreptozocinSystemTestingTherapeuticTissuesVascular DiseasesVascular Endothelial Growth FactorsVirusWound modelsangiogenesisattenuationbaseblood vessel developmentcell motilitycell typecritical limb Ischemiadiabeticdruggable targetendothelial dysfunctionendothelial stem cell gene therapyin vivoinnovationinsightknock-downlactate dehydrogenase Alimb amputationlimb ischemialoss of functionmigrationmouse modelneoplastic cellneovascularizationnotch proteinnoveloverexpressionprogramsresponserestorationrho GTPase-activating proteinsuccesstherapeutic evaluationtherapeutic targettype I diabeticvascular bedwoundwound healing
项目摘要
ABSTRACT
Diabetics suffer defective angiogenesis as a long-term complication and consequently a high propensity to
develop critical limb ischemia (CLI), the leading cause of limb amputation worldwide. This is due, in significant
part, to the deteriorated capacity of diabetic endothelial cells (ECs) and bone marrow-derived angiogenic cells,
also called endothelial progenitor cells (EPCs) to properly elaborate needed blood vessels in ischemic areas.
Lack of knowledge as to how this occurs has hampered therapeutic opportunities for CLI, including adoptive
therapies with autologous EPCs. PPARγ-coactivator (PGC)-1α is a versatile regulator of gene transcription that
coordinates broad metabolic programs in numerous tissues. The new and critical role for endothelial PGC-1α is
now emerging. Diabetes induces PGC-1α in mouse ECs and human EPCs, which in turn activates Notch
pathway that powerfully renders ECs resistant to VEGF. Ablation of EC PGC-1α in diabetic mice dramatically
rescues the full angiogenic capacity, which highlights considerable promise of targeting PGC-1α-Notch axis to
treat diabetic CLI. However, the significance of EC PGC-1α in diabetes is just beginning to be understood.
Deeper knowledge of how exactly this pathway blunts EC and EPC functions is imperative to fully explore its
therapeutic potential, since PGC-1α and Notch are expressed widely and mediate distinct, sometimes opposing
effects among cell types. Burgeoning evidence indicates that ECs are highly glycolytic comparable to tumor
cells, and that EC energy metabolism is the key mediator of sprouting angiogenesis in response to VEGF. In
this proposal, we hypothesize that persistent angiogenic impairment of diabetes is, at least in part, mediated by
PGC-1α/Notch-dependent alteration of cellular machineries that coordinate cytoskeleton with bioenergetics in
ECs and EPCs, and that this mechanism is independent of previously recognized mediators of diabetic vascular
dysfunction such as reactive oxygen species. Indeed, our preliminary findings identify novel downstream
effectors of PGC-1α/Notch axis that strongly support our hypothesis, and that this regulator is surprisingly
dispensable for health but required for diseases progression. This provides answers to many questions
regarding the PGC-1α angiostatic mechanism, and opens avenues to develop safe and efficacious therapeutics
for diabetic angiopathy that circumvent possible unwanted effects of targeting PGC-1α/Notch. Our hypothesis
would thus be of translational relevance to innovate therapies, including gene delivery and adoptive EPCs
transplantation, to salvage intractable dysfunction of ECs and EPCs in diabetes that causes angiogenic failure
and CLI. Our concept would also provide clues to strategizing how to intervene in cell metabolism and
cytoskeleton to develop therapeutics. The major goal of this proposal is to address this possibility.
抽象的
糖尿病患者作为长期并发症的血管生成有缺陷,因此很高的希望
开发关键的肢体缺血(CLI),这是全球肢体截肢的主要原因。这是应得的
部分,糖尿病内皮细胞(EC)和骨髓衍生的血管生成细胞的确定能力,
也称为内皮祖细胞(EPC),可在缺血性区域正确详细阐述所需的血管。
缺乏有关这种情况如何发生的知识,这阻碍了CLI的治疗机会,包括适应性
自体EPC的疗法。 PPARγ连续激活因子(PGC)-1α是基因转录的多功能调节剂,
在许多组织中协调广泛的代谢程序。内皮PGC-1α的新作用是
现在新兴。糖尿病在小鼠EC和人EPC中诱导PGC-1α,这又激活了Notch
有力地使EC具有抗VEGF的途径。 EC PGC-1α在糖尿病小鼠中的消融
营救全血管生成能力,这突出了将PGC-1α-核轴靶向的巨大希望
治疗糖尿病CLI。然而,EC PGC-1α在糖尿病中的重要性才开始理解。
更深入了解这一途径如何钝化EC和EPC功能必须充分探索其功能
治疗潜力,因为PGC-1α和Notch的表达广泛,培养基不同,有时相反
细胞类型之间的影响。新兴的证据表明ECS高糖酵解与肿瘤相当
细胞,EC能量代谢是响应VEGF的芽血管生成的关键介体。
这项建议,我们假设糖尿病的持续性血管生成障碍至少部分是由
PGC-1α/Notch依赖性改变的细胞机,与生物能量在
ECS和EPC,并且该机制独立于先前公认的糖尿病血管介质
功能障碍,例如活性氧。确实,我们的初步发现确定了下游的小说
PGC-1α/Notch轴的效应因子强烈支持我们的假设,并且该调节剂令人惊讶地是
可用于健康,但需要疾病进展。这为许多问题提供了答案
关于PGC-1α血管抑制机制,并为开发安全有效的疗法开放
对于靶向PGC-1α/Notch的可能有不良影响的糖尿病血管病。我们的假设
因此,将与创新疗法的转化相关,包括基因递送和自适应EPC
移植,以挽救糖尿病中EC和EPC的顽固性功能障碍,导致血管生成衰竭
和CLI。我们的概念还将为如何干预细胞代谢和
细胞骨架发展理论。该提案的主要目标是解决这种可能性。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quality-Quantity Control Culture Enhances Vasculogenesis and Wound Healing Efficacy of Human Diabetic Peripheral Blood CD34+ Cells.
- DOI:10.1002/sctm.17-0043
- 发表时间:2018-05
- 期刊:
- 影响因子:6
- 作者:Tanaka R;Masuda H;Fujimura S;Ito-Hirano R;Arita K;Kakinuma Y;Hagiwara H;Kado M;Hayashi A;Mita T;Ogawa T;Watada H;Mizuno H;Sawada N;Asahara T
- 通讯作者:Asahara T
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Naoki Sawada其他文献
Naoki Sawada的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
ArpC3-mediated actin remodeling in insulin granule exocytosis and diabetes
ArpC3 介导的肌动蛋白重塑在胰岛素颗粒胞吐作用和糖尿病中的作用
- 批准号:
10583734 - 财政年份:2023
- 资助金额:
$ 39.75万 - 项目类别:
Understanding the Role of GARP Proteins in Rod Outer Segment Disc Formation and Retinal Degeneration
了解 GARP 蛋白在视杆外节盘形成和视网膜变性中的作用
- 批准号:
10748725 - 财政年份:2023
- 资助金额:
$ 39.75万 - 项目类别:
Mechanism of nerve growth factor driven axon plasticity
神经生长因子驱动轴突可塑性机制
- 批准号:
10626679 - 财政年份:2022
- 资助金额:
$ 39.75万 - 项目类别:
The regulation of the microglial response to amyloid-beta plaques by the polycomb repressive complex 2
多梳抑制复合物 2 对小胶质细胞对淀粉样蛋白斑块反应的调节
- 批准号:
10533970 - 财政年份:2022
- 资助金额:
$ 39.75万 - 项目类别:
Receptor-mediated glucose sensing and skeletal muscle function
受体介导的葡萄糖传感和骨骼肌功能
- 批准号:
10318085 - 财政年份:2021
- 资助金额:
$ 39.75万 - 项目类别: