Role of endothelial and progenitor cell bioenergetics-cytoskeletal machinery in diabetic angiopathies
内皮细胞和祖细胞生物能学-细胞骨架机制在糖尿病血管病中的作用
基本信息
- 批准号:9895845
- 负责人:
- 金额:$ 39.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-15 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AblationActinsAddressAdoptive Cell TransfersAreaAttenuatedAutologousBioenergeticsBlood VesselsBlood flowBone MarrowCell Differentiation processCell TherapyCell physiologyCellsCellular Metabolic ProcessClinicClinicalComplicationCytoskeletonDataDefectDeteriorationDiabetes MellitusDiabetic AngiopathiesDiabetic mouseDiseaseDisease ProgressionEndothelial CellsEndotheliumEnergy MetabolismEnergy SupplyEtiologyExposure toFailureGene DeliveryGeneticGenetic TranscriptionGlycolysisGlycolysis InhibitionGoalsHealthHeartHindlimbHumanImpairmentInnovative TherapyInsulin-Dependent Diabetes MellitusInterventionIschemiaKnockout MiceKnowledgeLinkMediatingMediator of activation proteinMetabolicMitochondriaModelingMusNon-Insulin-Dependent Diabetes MellitusPPAR gammaPathway interactionsProcessRNA InterferenceReactive Oxygen SpeciesRecoveryRegulationRegulator GenesResistanceRoleSignal TransductionSkin wound healingStem cell transplantStreptozocinSystemTestingTherapeuticTissuesVascular DiseasesVascular Endothelial Growth FactorsVirusWound modelsangiogenesisattenuationbaseblood vessel developmentcell motilitycell typecritical limb Ischemiadiabeticdruggable targetendothelial dysfunctionendothelial stem cell gene therapyin vivoinnovationinsightknock-downlactate dehydrogenase Alimb amputationlimb ischemialoss of functionmigrationmouse modelneoplastic cellneovascularizationnotch proteinnoveloverexpressionprogramsresponserestorationrho GTPase-activating proteinsuccesstherapeutic evaluationtherapeutic targettype I diabeticvascular bedwoundwound healing
项目摘要
ABSTRACT
Diabetics suffer defective angiogenesis as a long-term complication and consequently a high propensity to
develop critical limb ischemia (CLI), the leading cause of limb amputation worldwide. This is due, in significant
part, to the deteriorated capacity of diabetic endothelial cells (ECs) and bone marrow-derived angiogenic cells,
also called endothelial progenitor cells (EPCs) to properly elaborate needed blood vessels in ischemic areas.
Lack of knowledge as to how this occurs has hampered therapeutic opportunities for CLI, including adoptive
therapies with autologous EPCs. PPARγ-coactivator (PGC)-1α is a versatile regulator of gene transcription that
coordinates broad metabolic programs in numerous tissues. The new and critical role for endothelial PGC-1α is
now emerging. Diabetes induces PGC-1α in mouse ECs and human EPCs, which in turn activates Notch
pathway that powerfully renders ECs resistant to VEGF. Ablation of EC PGC-1α in diabetic mice dramatically
rescues the full angiogenic capacity, which highlights considerable promise of targeting PGC-1α-Notch axis to
treat diabetic CLI. However, the significance of EC PGC-1α in diabetes is just beginning to be understood.
Deeper knowledge of how exactly this pathway blunts EC and EPC functions is imperative to fully explore its
therapeutic potential, since PGC-1α and Notch are expressed widely and mediate distinct, sometimes opposing
effects among cell types. Burgeoning evidence indicates that ECs are highly glycolytic comparable to tumor
cells, and that EC energy metabolism is the key mediator of sprouting angiogenesis in response to VEGF. In
this proposal, we hypothesize that persistent angiogenic impairment of diabetes is, at least in part, mediated by
PGC-1α/Notch-dependent alteration of cellular machineries that coordinate cytoskeleton with bioenergetics in
ECs and EPCs, and that this mechanism is independent of previously recognized mediators of diabetic vascular
dysfunction such as reactive oxygen species. Indeed, our preliminary findings identify novel downstream
effectors of PGC-1α/Notch axis that strongly support our hypothesis, and that this regulator is surprisingly
dispensable for health but required for diseases progression. This provides answers to many questions
regarding the PGC-1α angiostatic mechanism, and opens avenues to develop safe and efficacious therapeutics
for diabetic angiopathy that circumvent possible unwanted effects of targeting PGC-1α/Notch. Our hypothesis
would thus be of translational relevance to innovate therapies, including gene delivery and adoptive EPCs
transplantation, to salvage intractable dysfunction of ECs and EPCs in diabetes that causes angiogenic failure
and CLI. Our concept would also provide clues to strategizing how to intervene in cell metabolism and
cytoskeleton to develop therapeutics. The major goal of this proposal is to address this possibility.
抽象的
糖尿病患者的血管生成缺陷是一种长期并发症,因此很容易出现血管生成缺陷。
严重肢体缺血(CLI)是全球截肢的主要原因。
部分原因是糖尿病内皮细胞(EC)和骨髓来源的血管生成细胞的能力下降,
也称为内皮祖细胞(EPC),可以在缺血区域正确形成所需的血管。
由于缺乏关于这种情况如何发生的知识,阻碍了 CLI 的治疗机会,包括收养
自体 EPC 疗法(PGC)-1α 是一种多功能的基因转录调节因子。
内皮 PGC-1α 的新的关键作用是协调多种组织中的广泛代谢程序。
现在出现的糖尿病会在小鼠 EC 和人类 EPC 中诱导 PGC-1α,进而激活 Notch。
使糖尿病小鼠中的 EC PGC-1α 显着抵抗 VEGF 的途径。
挽救了完整的血管生成能力,这突显了靶向 PGC-1α-Notch 轴的巨大前景
然而,EC PGC-1α 在糖尿病中的重要性才刚刚开始被了解。
深入了解该途径到底如何削弱 EC 和 EPC 功能对于充分探索其作用势在必行。
治疗潜力,因为 PGC-1α 和 Notch 广泛表达并介导不同的、有时相反的作用
大量证据表明,与肿瘤相比,EC 具有高度糖酵解作用。
细胞,并且 EC 能量代谢是响应 VEGF In 的发芽血管生成的关键介质。
在这一提议中,我们认为糖尿病的持续血管生成损伤至少部分是由
PGC-1α/Notch 依赖性细胞机制改变,协调细胞骨架与生物能学
EC 和 EPC,并且该机制独立于先前公认的糖尿病血管介质
事实上,我们的初步研究结果发现了新的下游。
PGC-1α/Notch 轴的效应器强烈支持我们的假设,并且该调节器令人惊讶
这对于健康来说是可有可无的,但对于疾病进展来说是必需的,这为许多问题提供了答案。
关于 PGC-1α 血管抑制机制,并为开发安全有效的治疗方法开辟了途径
我们的假设是针对糖尿病血管病,避免靶向 PGC-1α/Notch 可能产生的不良影响。
因此,与创新疗法具有转化相关性,包括基因传递和采用 EPC
移植,以挽救糖尿病中导致血管生成失败的顽固性 EC 和 EPC 功能障碍
我们的概念还可以为制定如何干预细胞代谢的策略提供线索。
该提案的主要目标是解决这种可能性。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quality-Quantity Control Culture Enhances Vasculogenesis and Wound Healing Efficacy of Human Diabetic Peripheral Blood CD34+ Cells.
- DOI:10.1002/sctm.17-0043
- 发表时间:2018-05
- 期刊:
- 影响因子:6
- 作者:Tanaka R;Masuda H;Fujimura S;Ito-Hirano R;Arita K;Kakinuma Y;Hagiwara H;Kado M;Hayashi A;Mita T;Ogawa T;Watada H;Mizuno H;Sawada N;Asahara T
- 通讯作者:Asahara T
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Naoki Sawada其他文献
Naoki Sawada的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
肌动蛋白成核促进因子SHRC的结构和分子机制的研究
- 批准号:32301034
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
染色质重塑因子肌动蛋白样6A在视网膜变性中的作用机制及干预研究
- 批准号:82371081
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
肌动蛋白结合蛋白Xirp2介导基质刚度诱导心肌细胞肥大的力学生物学机制
- 批准号:12372314
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
肌动蛋白结合蛋白ANLN在胆汁淤积性肝损伤后肝再生过程中的作用及机制研究
- 批准号:82370648
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
WDR1介导的肌动蛋白解聚动态平衡在小脑浦肯野细胞衰老性焦亡中的作用研究
- 批准号:32371053
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
ArpC3-mediated actin remodeling in insulin granule exocytosis and diabetes
ArpC3 介导的肌动蛋白重塑在胰岛素颗粒胞吐作用和糖尿病中的作用
- 批准号:
10583734 - 财政年份:2023
- 资助金额:
$ 39.75万 - 项目类别:
Understanding the Role of GARP Proteins in Rod Outer Segment Disc Formation and Retinal Degeneration
了解 GARP 蛋白在视杆外节盘形成和视网膜变性中的作用
- 批准号:
10748725 - 财政年份:2023
- 资助金额:
$ 39.75万 - 项目类别:
Mechanism of nerve growth factor driven axon plasticity
神经生长因子驱动轴突可塑性机制
- 批准号:
10626679 - 财政年份:2022
- 资助金额:
$ 39.75万 - 项目类别:
The regulation of the microglial response to amyloid-beta plaques by the polycomb repressive complex 2
多梳抑制复合物 2 对小胶质细胞对淀粉样蛋白斑块反应的调节
- 批准号:
10533970 - 财政年份:2022
- 资助金额:
$ 39.75万 - 项目类别:
Receptor-mediated glucose sensing and skeletal muscle function
受体介导的葡萄糖传感和骨骼肌功能
- 批准号:
10318085 - 财政年份:2021
- 资助金额:
$ 39.75万 - 项目类别: