Opioid Drug Ontology (ODO)
阿片类药物本体论 (ODO)
基本信息
- 批准号:9895053
- 负责人:
- 金额:$ 23.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:Acute PainAdverse drug effectAnalgesicsAnatomyAnimalsBehavioralBindingBiochemicalBiologicalBrainCessation of lifeCharacteristicsChemical StructureClinicalCommunitiesComplexCrystallizationDataData SourcesDatabasesDependenceDevelopmentDrug DesignEffectivenessElderlyFAIR principlesFailureG-Protein-Coupled ReceptorsGene ExpressionGeneticGenomeGoalsGoldHumanHybridsIn VitroKnowledgeKnowledge DiscoveryLibrariesLigandsLinkMachine LearningMapsMetadataMethodsModelingMolecularMolecular ConformationMutagenesisNarcoticsNetwork-basedNeuropharmacologyOntologyOpioidOpioid AnalgesicsOpioid ReceptorOpioid Receptor BindingOverdosePainPharmaceutical PreparationsPharmacologyPhenotypePhysical DependencePopulationProcessProgram DevelopmentPublicationsReceptor SignalingReportingResearchResearch PersonnelResolutionRiskScientistSemanticsSignal PathwaySignal TransductionStructureSystemTissuesTranslational ResearchUnited StatesVentilatory DepressionWorkaddictionbasechronic painchronic painful conditionclinical paincloud basedcomputer frameworkcomputerized data processingdata analysis pipelinedata harmonizationdata portaldata standardsdesigndiverse datadrug developmentdrug discoveryexperimental studyheuristicsimprovedin vivojournal articleknowledge basemedical attentionmu opioid receptorsnovelnovel therapeuticsopioid epidemicopioid mortalityopioid overdoseoverdose deathpredictive modelingprescription opioidprogramsreceptorresponsescaffoldscreeningsearch engineside effectsimulationsmall moleculesoftware developmentsoftware systemsstructured datasuccesstool
项目摘要
PROJECT SUMMARY
Analgesics are among the most commonly prescribed medications, and opioid painkillers are the gold standard
for the management of severe acute pain, and for many chronic pain conditions. More than 30% of the U.S.
population suffers from chronic pain, and nearly 40% of older adults report debilitating chronic pain conditions
not caused by cancer. However, side effects of opioids, including tolerance, physical dependence, and
respiratory depression have limited their effectiveness as pain killers. Rates of addiction and opioid overdose
have escalated to a point of crisis. In the United States, on average approximately 115 people die every day
from accidental overdose. Better, efficacious and safe opioid analgesic drugs with reduced risk of use are
urgently needed.
We propose to develop the Opioid Drug Ontology (ODO) – an integrated knowledgebase aimed at accelerating
and improving the success of translational research and drug discovery programs towards the identification of
efficacious and save opioid drugs. ODO will enable multi-tiered analyses across diverse data types and
hypothesis development for example by connecting chemical structure, biochemical binding profiles,
pharmacological responses in animals and drug side effects and thus enable more effective rational drug
discovery programs.
To develop ODO we will leverage our extensive previous work in several research consortia developing formal
ontologies, data standards, processing and integration methods, and software systems to enable integrated
access, query and analysis of large scale and diverse data types.
The current proposal aims to demonstrate the feasibility of the ODO integrated knowledgebase and illustrate
proof of concept via two Specific Aims: (1) to curate and harmonize ODO content from diverse data sources
via a semantic knowledge model enabling integration of diverse data types, and (2) to deploy the ODO
integrated Data Portal and Search Engine engaging the community and demonstrate its heuristic value.
We envision that the ODO will pave the way to enable advanced machine learning and link results from
molecular simulations with opioid analgesic drug pharmacology and functional selectivity, thus facilitating, at
larger scale, the rational, predictive design, and scaffold optimization in drug development efforts towards
identifying safer opioid analgesics.
项目摘要
镇痛药是最常见的药物,阿片类止痛药是黄金标准
用于严重的急性疼痛和许多慢性疼痛状况。
人口患有慢性疼痛,近40%的老年人报告说使疼痛疼痛状况衰弱
但是,不是由癌症引起的。
呼吸道抑郁症限制了作为屁股杀手的有效性。
在美国升级到危机。
意外用药过量。
迫切需要。
我们建议开发阿片类药物本体论(ODO) - 旨在加速的综合知识基础
并改善转化研究和药物发现计划的成功识别
有效并节省阿片类药物。
假设发展,例如通过连接化学结构,生化结合曲线,
动物和药物副作用的药理学反应,从而实现更有效的理性药物
发现程序。
为了开发ODO,我们将利用我们在严重研究联盟领域进行广泛的以前的工作
本体,数据标准,处理和集成方法以及软件系统以启用集成
访问,查询和分析大型数据类型。
当前的建议旨在证明ODO综合知识库的可行性并说明
通过两个具体目标通过两个特定目的的概念证明:(1)策划和协调来自不同数据源的ODO内容
通过语义知识模型,可以集成各种数据类型,(2)部署ODO
集成数据门户和搜索引擎英语引擎委员会并展示其启发式价值。
我们设想ODO将铺路以启用高级机器学习并链接从
用阿片类镇痛药药理学和功能选择的分子模拟,从而促进,在
大规模的,在药物开发源中的理性,预测设计和脚手架优化
识别更安全的阿片类镇痛药。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephan C Schurer其他文献
Stephan C Schurer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephan C Schurer', 18)}}的其他基金
Elucidating the Understudied Kinase PNCK as a Prospective Drug Target in Renal Cell Carcinoma
阐明正在研究的激酶 PNCK 作为肾细胞癌的潜在药物靶点
- 批准号:
10667043 - 财政年份:2023
- 资助金额:
$ 23.03万 - 项目类别:
LINCS Information FramEwork (LIFE) to Integrate and Analyze Diverse Data Set
用于集成和分析不同数据集的 LINCS 信息框架 (LIFE)
- 批准号:
8463321 - 财政年份:2011
- 资助金额:
$ 23.03万 - 项目类别:
LINCS Information FramEwork (LIFE) to Integrate and Analyze Diverse Data Set
用于集成和分析不同数据集的 LINCS 信息框架 (LIFE)
- 批准号:
8677231 - 财政年份:2011
- 资助金额:
$ 23.03万 - 项目类别:
LINCS Information FramEwork (LIFE) to Integrate and Analyze Diverse Data Set
用于集成和分析不同数据集的 LINCS 信息框架 (LIFE)
- 批准号:
8463320 - 财政年份:2011
- 资助金额:
$ 23.03万 - 项目类别:
LINCS Information FramEwork (LIFE) to Integrate and Analyze Diverse Data Set
用于集成和分析不同数据集的 LINCS 信息框架 (LIFE)
- 批准号:
8336887 - 财政年份:2011
- 资助金额:
$ 23.03万 - 项目类别:
LINCS Information FramEwork (LIFE) to Integrate and Analyze Diverse Data Set
用于集成和分析不同数据集的 LINCS 信息框架 (LIFE)
- 批准号:
8231072 - 财政年份:2011
- 资助金额:
$ 23.03万 - 项目类别:
LINCS Information FramEwork (LIFE) to Integrate and Analyze Diverse Data Set
用于集成和分析不同数据集的 LINCS 信息框架 (LIFE)
- 批准号:
8711728 - 财政年份:2011
- 资助金额:
$ 23.03万 - 项目类别:
相似海外基金
Developing multitarget enzyme inhibitors as safe and effective anti-migraine treatments
开发多靶点酶抑制剂作为安全有效的抗偏头痛治疗方法
- 批准号:
10714658 - 财政年份:2023
- 资助金额:
$ 23.03万 - 项目类别:
Peripherally-restricted non-addictive cannabinoids for cancer pain treatment
用于癌症疼痛治疗的外周限制性非成瘾大麻素
- 批准号:
10726405 - 财政年份:2023
- 资助金额:
$ 23.03万 - 项目类别:
Advancing Development of Novel Immunotherapy for Chemotherapy-induced Peripheral Neuropathy (CIPN)
推进化疗引起的周围神经病变 (CIPN) 的新型免疫疗法的发展
- 批准号:
10588384 - 财政年份:2023
- 资助金额:
$ 23.03万 - 项目类别:
Cannabidiol for postoperative Opioid Reduction in primary total Knee arthroplasty – a randomized, 2x2 factorial, double-blind, placebo-controlled clinical trial (The CORK trial)
大麻二酚用于初次全膝关节置换术术后阿片类药物减少 — 一项随机、2x2 析因、双盲、安慰剂对照临床试验(CORK 试验)
- 批准号:
10733651 - 财政年份:2023
- 资助金额:
$ 23.03万 - 项目类别:
Targeting TLR4-lipid rafts to prevent postoperative pain
靶向 TLR4 脂筏预防术后疼痛
- 批准号:
10701528 - 财政年份:2023
- 资助金额:
$ 23.03万 - 项目类别: