GLP1R neurons in the subfornical organ and integration of thirst and satiety cues

穹窿下器官中的 GLP1R 神经元以及口渴和饱腹感信号的整合

基本信息

  • 批准号:
    9893863
  • 负责人:
  • 金额:
    $ 15.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-04-01 至 2021-03-31
  • 项目状态:
    已结题

项目摘要

Project Summary Discoveries made in sensory biology not only shape the way we live, but also have important repercussions for human health. My long-term career goal is to better understand how environmental cues are detected and encoded in the periphery, and communicated with the brain to control physiology and behavior in health and disease. My current objective described in this proposal is to investigate how GLP-1 communicates centrally with the subfornical organ to control water intake and body fluid homeostasis. Maintaining fluid homeostasis is crucial for health and disease. Elevation of circulatory osmolarity by high glucose causes polydipsia in diabetic patients. Incretin therapies that involve mimicry or stabilization of glucagon-like peptide 1 (GLP-1) provide a strategy for treatment of type 2 diabetes. As an incretin, GLP-1 not only controls insulin release and feeding behavior but also regulates blood pressure, renal excretion of sodium, and fluid intake to coordinately promote digestion at a systematic level after meal. Intriguingly, acute GLP-1 administration elicits hypodipsia and effectively reduces water consumption in both healthy subjects and diabetic patients, suggesting an alternative strategy for alleviating polydipsia in diabetic patients. Among the many sites that express the receptor for GLP- 1 (GLP1R), the subfornical organ is a major brain center that controls water intake and fluid homeostasis. My central hypothesis is that SFO GLP1R neurons integrate satiety signals after meal to control fluid intake through specific signaling cascades and central neural circuits. I will test this hypothesis through three specific aims: to determine the effect of SFO GLP1R neuron stimulation on fluid intake (Specific Aim 1), to decipher GLP1R signaling pathways in these cells (Specific Aim 2), and to scrutinize their anatomical and functional connectivity (Specific Aim 3). For the training necessary for Specific Aim 2, I will continue to greatly benefit from the guidance of my mentor Prof. Liberles, who has incredible knowledge and understanding in GPCR signaling pathways. To carry out Specific Aim 1 and 3, I will also need to broaden my knowledge and skills to include mouse behavior and neurocircuit mapping, such as stereotaxic brain surgeries, brain slice electrophysiology, and chemogenetics. Such knowledge and skills will be obtained from training with my co- mentor, Prof. Bradford Lowell. I have received tremendous guidance from Prof. Lowell and his lab members in the past, with generation of Glp1r-ires-Cre mice and brain stereotaxic injection. I will continue to learn brain slice recording, rabies virus-based tracing, channelrhodopsin-assisted circuit mapping (CRACM), and DREADD-involved behavioral experiments under the guidance of Prof. Lowell. Particularly regarding the anatomical tracing of SFO GLP1R neurons (Specific Aim 3) that requires very extensive knowledge of brain anatomy, I will collaborate with Prof. Clifford Saper, who is an expert in neuroanatomy more than 40 years experience. Together, these studies will greatly expand our knowledge on how GLP-1 signal is integrated in the brain to coordinately control physiology and shed light on GLP-1 based drug design.
项目摘要 在感觉生物学中创造的发现不仅会塑造我们的生活方式,而且对 人类健康。我的长期职业目标是更好地了解如何检测到环境线索和 在外围编码,并与大脑进行交流,以控制健康中的生理和行为 疾病。我目前在此提案中描述的目前的目标是调查GLP-1如何中心交流 用副骨骼器官控制水的摄入量和体液稳态。保持流体稳态是 对于健康和疾病至关重要。高葡萄糖通过高葡萄糖抬高循环渗透性会导致多次糖尿病患者 患者。涉及模仿或稳定胰高血糖素样肽1(GLP-1)的肠直直染素疗法提供了A 治疗2型糖尿病的策略。作为肠静脉素,GLP-1不仅控制胰岛素释放和进食 行为,但还调节血压,钠的肾脏排泄和液体摄入以协调促进 进餐后在系统水平上消化。有趣的是,急性GLP-1给药会引起速度和 有效地降低了健康受试者和糖尿病患者的用水量,这表明了另一种 减轻糖尿病患者多次多次的策略。在表达GLP受体的许多位点中 1(GLP1R),副脱机器官是控制摄入量和液体稳态的主要大脑中心。我的 中心假设是SFO GLP1R神经元在进餐后整合饱腹感以控制液体摄入量 通过特定的信号级联和中央神经回路。我将通过三个特定的特定来检验这一假设 目的:确定SFO GLP1R神经元刺激对液体摄入的影响(特定目标1) 这些细胞中的GLP1R信号通路(特定目标2),并仔细检查其解剖学和功能 连接性(特定目标3)。对于特定目标2所需的培训,我将继续大大受益 从我的导师Libleles教授的指导下,他在GPCR中具有令人难以置信的知识和理解 信号通路。要执行特定的目标1和3,我还需要扩大我的知识和技能 包括鼠标行为和神经回路映射,例如立体定位脑手术,脑切片 电生理学和化学遗传学。这些知识和技能将通过与我的共同培训获得 导师,布拉德福德·洛厄尔教授。我收到了洛厄尔教授及其实验室成员的巨大指导 过去,随着GLP1R-IRES-CRE小鼠和脑立体定位注射的产生。我将继续学习大脑 切片记录,基于狂犬病病毒的追踪,通道旋转辅助电路映射(CRACM)和 在洛厄尔教授的指导下进行了涉及Dreadd的行为实验。特别是关于 SFO GLP1R神经元的解剖学跟踪(特定目标3),需要对大脑非常广泛的了解 解剖学,我将与克利福德·萨珀(Clifford Saper)教授合作,他是40多年的神经解剖学专家 经验。这些研究一起将大大扩展我们对GLP-1信号如何集成到中的知识 大脑协调地控制生理学并阐明基于GLP-1的药物设计。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

RUI CHANG其他文献

RUI CHANG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('RUI CHANG', 18)}}的其他基金

Novel Combinations of Natural Product Compounds for Treatment of Alzheimer Disease and Related Dementias
用于治疗阿尔茨海默病和相关痴呆症的天然产物化合物的新组合
  • 批准号:
    10603708
  • 财政年份:
    2023
  • 资助金额:
    $ 15.66万
  • 项目类别:
Understanding the molecular and functional architecture of diverse body-brain pathways
了解不同体脑通路的分子和功能结构
  • 批准号:
    10503462
  • 财政年份:
    2022
  • 资助金额:
    $ 15.66万
  • 项目类别:
A molecular and functional dissection of the vagal heart-to-brain physiological circuits
迷走神经心脑生理回路的分子和功能解剖
  • 批准号:
    10314071
  • 财政年份:
    2019
  • 资助金额:
    $ 15.66万
  • 项目类别:
A molecular and functional dissection of the vagal heart-to-brain physiological circuits
迷走神经心脑生理回路的分子和功能解剖
  • 批准号:
    10526423
  • 财政年份:
    2019
  • 资助金额:
    $ 15.66万
  • 项目类别:
GLP1R neurons in the subfornical organ and integration of thirst and satiety cues
穹窿下器官中的 GLP1R 神经元以及口渴和饱腹感信号的整合
  • 批准号:
    9575133
  • 财政年份:
    2017
  • 资助金额:
    $ 15.66万
  • 项目类别:

相似国自然基金

内源激动剂ArA靶向TMEM175蛋白缓解帕金森病症的分子机制研究
  • 批准号:
    32300565
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Adrb2激动剂在改善呼吸机相关性膈肌功能障碍中的作用与机制研究
  • 批准号:
    82372196
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
新型IL2Rβγ激动剂逐级控释联合放疗对抗三阴性乳腺癌的作用及机制研究
  • 批准号:
    82303819
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于OSMAC-GNPS分析策略的蚂蚱内生真菌Aspergillus sp.中新颖泛PPAR激动剂的发现及治疗NASH研究
  • 批准号:
    82304340
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
探究FSP1激动剂在治疗肾缺血再灌注损伤中的分子机理与应用
  • 批准号:
    82304600
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Circadian control of neuroinflammation after spinal cord injury
脊髓损伤后神经炎症的昼夜节律控制
  • 批准号:
    10639178
  • 财政年份:
    2023
  • 资助金额:
    $ 15.66万
  • 项目类别:
Role of glucagon-like peptide-1 signaling in mediating sensory-specific satiety
胰高血糖素样肽-1 信号传导在介导感觉特异性饱腹感中的作用
  • 批准号:
    10750216
  • 财政年份:
    2023
  • 资助金额:
    $ 15.66万
  • 项目类别:
The role of PPARγ in astrocyte pathobiology after exposure to repetitive mild traumatic brain injury
PPARγ 在重复性轻度脑外伤后星形胶质细胞病理学中的作用
  • 批准号:
    10739968
  • 财政年份:
    2023
  • 资助金额:
    $ 15.66万
  • 项目类别:
Neuropeptide Y1 Receptor-Expressing Neurons in the Lateral Parabrachial Nucleus in Neuropathic Pain
神经性疼痛中臂旁核外侧核表达神经肽 Y1 受体的神经元
  • 批准号:
    10635473
  • 财政年份:
    2023
  • 资助金额:
    $ 15.66万
  • 项目类别:
Resolvin receptor signaling in trigeminal sensory neurons
三叉神经感觉神经元中的 Resolvin 受体信号传导
  • 批准号:
    10738862
  • 财政年份:
    2023
  • 资助金额:
    $ 15.66万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了