Interrogating stress-relieving neural circuits to alleviate cardiovascular disease
研究缓解压力的神经回路以减轻心血管疾病
基本信息
- 批准号:9893161
- 负责人:
- 金额:$ 73.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-05 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:Angiotensin ReceptorAngiotensin Type 1a ReceptorAngiotensinsAttenuatedBlood PressureBrain regionCardiovascular DiseasesCardiovascular systemCause of DeathCorticosteroneCoupledDevelopmentDiseaseEnergy MetabolismEtiologyEventFunctional disorderGene TransferGenesGeneticHeart RateHumanInterventionLaboratory miceLifeLinkMediatingModelingModernizationMusNervous system structureNeuronsNeurosciencesNeurosecretory SystemsNodose GanglionPerceptionPharmacologyPhysiologyPopulationPredispositionPressoreceptorsPsychological StressResearchStressStructureSystemTechniquesTreatment EfficacyType 2 Angiotensin II ReceptorUnited StatesViralanxiety-like behaviorbehavioral responseblood pressure reductioncardiovascular healthexperimental studygenetic technologyimprovedin vivoindexinginsightneural circuitneural patterningnovel therapeuticsoptogeneticspreclinical studyreceptorrecombinase-mediated cassette exchangerelating to nervous systemresilience
项目摘要
Project Summary
Stressful life events are linked to the etiology of cardiovascular disease (CVD), which is the leading cause of
death in the U.S. The mechanisms by which stress causes pathophysiology contributing to CVD are poorly
understood and effective therapeutics that relieve stress and improve cardiovascular health are lacking. A
premise of this proposal is that exploration of the neural circuits controlling the perception of stress may provide
insight towards mechanisms underlying CVD and interventions aimed at its reversal. Causally-linking patterns
of neural activity to stress and the development of CVD in humans is challenging. However, preclinical studies
using laboratory mice that implement modern neuroscience and genetic technologies to excite or inhibit specific
neural circuits make causally-linking neural activity and indices of stress responsiveness achievable. Using
genetically-modified mice, we revealed that the activity of neurons that express genes encoding particular
angiotensin receptor subtypes is coupled to cardiovascular, neuroendocrine and behavioral responses to stress.
Specifically, we discovered that neurons expressing the angiotensin type-2 (AT2R) and Mas receptor (MasR)
densely populate cortical and limbic brain regions controlling the perception of psychological stress and that
excitation of these neurons decreases blood pressure, heart rate, circulating levels of corticosterone and anxiety-
like behavior. In the periphery, we discovered that the nodose ganglion is densely populated by neurons
expressing the angiotensin type 1a receptor (AT1R). These neurons function as primary baroreceptor afferents
and excitation of these neurons lowers blood pressure, heart rate and energy expenditure. Collectively, these
observations have led to the overall hypothesis that excitation of particular neuronal populations that
express the AT1R, AT2R or MasR alters the perception of stress to protect against CVD. Experiments will
use the Cre-LoxP system in mice with a cadre of modern neuroscience techniques and classical systems
physiology to confirm or refute this hypothesis. Initial experiments utilize Cre-diver mice with virally-mediated
gene transfer and in vivo optogenetics to determine whether the excitation or inhibition of neurons that express
AT1R, AT2R, or MasR attenuates or exacerbates stress responding. Subsequent experiments use a model of
stress-induced pathophysiology to evaluate how the structure and function of neurons that express the AT1R,
AT2R or MasR is altered by disease. The final experiments attempt to alleviate stress-induced pathophysiology
with optogenetic, genetic or pharmacological manipulations that alter the excitability of neurons that express the
AT1R, AT2R or MasR. We anticipate that the proposed research will reveal, at a detailed and mechanistic level,
neural circuits that provide stress relief, thereby guiding development of novel therapeutics for CVD.
项目概要
生活压力事件与心血管疾病 (CVD) 的病因有关,而心血管疾病是导致心血管疾病的主要原因
压力导致 CVD 的病理生理学机制尚不明确
目前缺乏缓解压力和改善心血管健康的有效疗法。一个
该提议的前提是,探索控制压力感知的神经回路可能会提供
深入了解 CVD 的潜在机制以及旨在逆转其的干预措施。因果关系模式
神经活动对压力和人类心血管疾病发展的影响具有挑战性。然而,临床前研究
使用实施现代神经科学和遗传技术的实验室小鼠来兴奋或抑制特定的
神经回路使神经活动和压力反应指数之间存在因果联系。使用
在转基因小鼠中,我们发现表达编码特定基因的神经元的活动
血管紧张素受体亚型与心血管、神经内分泌和对压力的行为反应有关。
具体来说,我们发现表达 2 型血管紧张素 (AT2R) 和 Mas 受体 (MasR) 的神经元
密集分布的皮质和边缘大脑区域控制着心理压力的感知
这些神经元的兴奋会降低血压、心率、皮质酮的循环水平和焦虑——
喜欢的行为。在外围,我们发现结状神经节密集地分布着神经元
表达血管紧张素 1a 型受体 (AT1R)。这些神经元充当初级压力感受器传入神经元
这些神经元的兴奋会降低血压、心率和能量消耗。总的来说,这些
观察结果得出了这样一个总体假设:特定神经元群体的兴奋
表达 AT1R、AT2R 或 MasR 可以改变压力感知,从而预防 CVD。实验将
在具有现代神经科学技术和经典系统骨干的小鼠中使用 Cre-LoxP 系统
生理学来证实或反驳这一假设。最初的实验利用带有病毒介导的 Cre-diver 小鼠
基因转移和体内光遗传学,以确定是否激发或抑制表达的神经元
AT1R、AT2R 或 MasR 会减弱或加剧应激反应。后续实验使用的模型为
应激诱导的病理生理学来评估表达 AT1R 的神经元的结构和功能,
AT2R 或 MasR 会因疾病而改变。最终的实验试图减轻压力引起的病理生理学
通过光遗传学、遗传或药理学操作改变表达神经元的兴奋性
AT1R、AT2R 或 MasR。我们预计拟议的研究将在详细和机械层面上揭示:
缓解压力的神经回路,从而指导CVD新疗法的开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Gerald Krause其他文献
Eric Gerald Krause的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Gerald Krause', 18)}}的其他基金
Leveraging vagal oxytocin receptors to understand cardiometabolic interoception
利用迷走神经催产素受体了解心脏代谢内感受
- 批准号:
10698525 - 财政年份:2022
- 资助金额:
$ 73.34万 - 项目类别:
Interrogating stress-relieving neural circuits to alleviate cardiovascular disease
研究缓解压力的神经回路以减轻心血管疾病
- 批准号:
10550158 - 财政年份:2020
- 资助金额:
$ 73.34万 - 项目类别:
Interrogating stress-relieving neural circuits to alleviate cardiovascular disease
研究缓解压力的神经回路以减轻心血管疾病
- 批准号:
10331014 - 财政年份:2020
- 资助金额:
$ 73.34万 - 项目类别:
Neurons expressing angiotensin type 2 receptors in the NTS as an access point for cardiovascular control.
NTS 中表达 2 型血管紧张素受体的神经元作为心血管控制的接入点。
- 批准号:
10082461 - 财政年份:2017
- 资助金额:
$ 73.34万 - 项目类别:
Central Mechanisms Underlying the Stress Dampening Effects of Acute Hypernatremia
急性高钠血症应激抑制作用的中枢机制
- 批准号:
8978315 - 财政年份:2014
- 资助金额:
$ 73.34万 - 项目类别:
Central Angiotensin receptors and teh neural control of homeostasis
中枢血管紧张素受体和稳态的神经控制
- 批准号:
8307132 - 财政年份:2011
- 资助金额:
$ 73.34万 - 项目类别:
Central Angiotensin receptors and teh neural control of homeostasis
中枢血管紧张素受体和稳态的神经控制
- 批准号:
8328924 - 财政年份:2011
- 资助金额:
$ 73.34万 - 项目类别:
Central Angiotensin receptors and teh neural control of homeostasis
中枢血管紧张素受体和稳态的神经控制
- 批准号:
8511788 - 财政年份:2011
- 资助金额:
$ 73.34万 - 项目类别:
Central AT1 receptors and the integrated stress response.
中枢 AT1 受体和综合应激反应。
- 批准号:
7707282 - 财政年份:2009
- 资助金额:
$ 73.34万 - 项目类别:
The effect of AT1R antisense on centrally-mediated responses to angiotension II
AT1R 反义对中枢介导的血管紧张素 II 反应的影响
- 批准号:
7477932 - 财政年份:2007
- 资助金额:
$ 73.34万 - 项目类别:
相似国自然基金
microRNA-29b介导血管平滑肌细胞AT1aR基因DNA去甲基化参与高血压发病机制的研究
- 批准号:81200193
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Gustatory and interoceptive regulation of hypertension
高血压的味觉和内感受调节
- 批准号:
10388488 - 财政年份:2022
- 资助金额:
$ 73.34万 - 项目类别:
Impact of Early Life Sodium Intake on Growth and Metabolism – Role of Hypothalamic Mechanisms
生命早期钠摄入量对生长和代谢的影响 — 下丘脑机制的作用
- 批准号:
10682499 - 财政年份:2022
- 资助金额:
$ 73.34万 - 项目类别:
Gustatory and interoceptive regulation of hypertension
高血压的味觉和内感受调节
- 批准号:
10608950 - 财政年份:2022
- 资助金额:
$ 73.34万 - 项目类别:
Impact of Early Life Sodium Intake on Growth and Metabolism – Role of Hypothalamic Mechanisms
生命早期钠摄入量对生长和代谢的影响 — 下丘脑机制的作用
- 批准号:
10493724 - 财政年份:2022
- 资助金额:
$ 73.34万 - 项目类别:
Intermittent hypoxia and hypertension: Role of the lamina terminalis
间歇性缺氧和高血压:终板的作用
- 批准号:
10548872 - 财政年份:2021
- 资助金额:
$ 73.34万 - 项目类别: