Cholesterol Toxicity as a Promising Target for Diabetes Prevention
胆固醇毒性是预防糖尿病的一个有希望的目标
基本信息
- 批准号:9767799
- 负责人:
- 金额:$ 39.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-22 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:ATP-Binding Cassette TransportersActinsAdipocytesAffectAnabolismAnimalsBindingCaveolaeCell Culture TechniquesCell membraneCellsCellular AssayCharacteristicsCholesterolCholesterol HomeostasisClinicalComplementDNADataDefectDevelopmentDiabetes MellitusDiabetes preventionDiagnosisDistalEnzymesEpidemicEventF-ActinFamily suidaeFatty acid glycerol estersFunctional disorderGLUT4 geneGene ExpressionGenesGenetic TranscriptionGlucoseGlucose IntoleranceGlucose Plasma ConcentrationGlucose TransporterHealthHexosaminesHigh Fat DietHumanHydroxymethylglutaryl-CoA reductaseHyperglycemiaImageryImpairmentIn VitroInsulinInsulin ResistanceInsulin-Dependent Diabetes MellitusInvestigationKnowledgeLinkMediatingMembraneMembrane FusionMembrane MicrodomainsModificationMolecular ProfilingMusMuscleMuscle CellsNon-Insulin-Dependent Diabetes MellitusObesityPathway interactionsPharmacologyPhosphatidic AcidPhosphatidylinositol 4,5-DiphosphatePhosphatidylinositolsPositioning AttributePrediabetes syndromePreventionProcessProductionRattusRegulationResearchResistance developmentRoleSecondary toSp1 Transcription FactorStructureTestingTherapeuticTissuesToxic effectTranscriptional ActivationUncertaintyVesiclebaseblood glucose regulationcholesterol biosynthesischolesterol transportersdiabetes riskenzyme pathwayexperimental studyfasting plasma glucoseglucose transportglucose uptakeimprovedin vivoinhibitor/antagonistinsulin sensitivityknock-downnew therapeutic targetnoveloverexpressionphospholipase D1polymerizationpreventresponsestemuptake
项目摘要
There is little doubt that excess glucose flux through the hexosamine biosynthesis pathway (HBP) can cause insulin resistance. Clinical findings support the contention that glucose-induced insulin resistance likely starts years before the onset of type 2 diabetes, even before prediabetes is recognized. Although a mechanism is not known, in vitro data suggest that increased HBP activity increases O-linked N-acetylglucosamine modification of Sp1, leading to transcriptional activation of HMG-CoA reductase, the rate-limiting enzyme in cholesterol synthesis. This HBP-induced response increases plasma membrane (PM) cholesterol that impairs insulin-stimulated glucose transporter GLUT4-mediated glucose transport. Inhibition of HBP activity or blockade of O-GlcNAc-modified Sp1 binding to DNA prevents PM cholesterol accumulation and GLUT4/glucose transport dysregulation. These cell culture data support a novel hypothesis that the breakdown of glucose homeostasis in insulin resistance is secondary to increased HBP-mediated cholesterol biosynthesis. The fact excess PM cholesterol is seen in vivo suggests that regulatory mechanisms that protect against cellular cholesterol accumulation/toxicity may be defective in insulin-resistant fat/muscle. In support of this possibility, the HBP-cholesterolgenic response also impairs ATP-binding cassette transporter A1 (ABCA1)-mediated cholesterol efflux from insulin-resistant 3T3-L1 adipocytes. Collectively, these data are in accord with recent gene expression studies showing that alterations in a network of cholesterol metabolism genes are associated with T2D risk. Data from cells and tissues suggest PM cholesterol accumulation diminishes cortical filamentous actin (F-actin) important for GLUT4 regulation. Despite this loss of F-actin, preliminary mechanistic studies in insulin-resistant 3T3-L1 adipocytes show GLUT4 storage vesicles (GSVs) are mobilized by insulin to a position just beneath the cholesterol-laden PM but then fail to incorporate and transport glucose. Data suggest that this impairment results from defective phospholipase D1 (PLD1)-mediated production of phosphatidic acid (PA), which is known to promote GSV/PM fusion. This project will determine whether the in vivo increase in PM cholesterol in insulin-resistant fat/muscle is due to HBP-driven Sp1 transcriptional events, and if defective ABCA1 and/or ABCG1-mediated protection against PM cholesterol accumulation occurs exacerbating insulin resistance (Aim 1). With both the regulation of F-actin polymerization and PLD1 activation occurring at cholesterol-enriched caveolae PM microdomains, this project will also determine if excess PM cholesterol-driven defects in these cytoskeletal/membrane GLUT4-regulatory steps are causally linked to insulin resistance (Aim 2). A key postulate of this application is that the development of glucose intolerance in vivo involves a HBP-induced cholesterolgenic response that impairs one or more distal membrane-based mechanisms of GLUT4 regulation. Advancement of this understanding will reshape our understanding of insulin resistance development and identify new therapeutic targets for its prevention and/or treatment.
毫无疑问,通过己胺生物合成途径(HBP)过多的葡萄糖通量会引起胰岛素抵抗。临床发现支持了葡萄糖诱导的胰岛素抵抗可能在2型糖尿病发作之前几年开始的争论,甚至在确认糖尿病前期之前也是如此。尽管尚不清楚一种机制,但体外数据表明,HBP活性增加会增加SP1的O连接的N-乙酰葡萄糖修饰,从而导致HMG-COA还原酶的转录激活,这是胆固醇合成中的速率限制酶。这种HBP诱导的反应增加了质膜(PM)胆固醇,从而损害了胰岛素刺激的葡萄糖转运蛋白GLUT4介导的葡萄糖转运。抑制HBP活性或O-GLCNAC修饰的SP1与DNA结合的阻断可防止PM胆固醇的积累和GLUT4/葡萄糖转运失调。这些细胞培养数据支持一个新的假设,即胰岛素抵抗中葡萄糖稳态的分解是HBP介导的胆固醇生物合成的继发性。在体内看到过量的PM胆固醇表明,预防细胞胆固醇积累/毒性的调节机制在胰岛素耐药性脂肪/肌肉中可能有缺陷。为了支持这种可能性,HBP-胆固醇的反应还会损害ATP结合盒转运蛋白A1(ABCA1)介导的胰岛素3T3-L1脂肪细胞中介导的胆固醇外排。总的来说,这些数据与最近的基因表达研究一致,表明胆固醇代谢基因网络的变化与T2D风险有关。来自细胞和组织的数据表明,PM胆固醇的积累减少了皮质丝状肌动蛋白(F-肌动蛋白)对GLUT4调节很重要。尽管失去了F-肌动蛋白,但在胰岛素耐药3T3-L1脂肪细胞中的初步机理研究表明,GLUT4储藏囊泡(GSV)通过胰岛素动员到含胆固醇含有胆固醇的PM下的位置,但随后未能掺入和转运Glucose。数据表明,这种损害是由缺陷的磷脂酶D1(PLD1)介导的磷脂酸(PA)的产生,该磷脂酸(PA)已知可以促进GSV/PM融合。该项目将确定胰岛素耐药性脂肪/肌肉中PM胆固醇的体内升高是否是由于HBP驱动的SP1转录事件以及ABCA1和/或ABCG1介导的PM胆固醇积累的防护性是否会导致胰岛素抵抗加剧(AIM 1)。随着F-肌动聚合的调节和PLD1激活发生在胆固醇含有的小窝PM微域处,该项目还将确定在这些细胞骨架/膜GLUT4 glut4-调节性步骤中是否有效地将过量的PM PM胆固醇驱动的缺陷与胰岛素抗胰岛素抗性(AIM 2)。该应用的一个关键假设是,体内葡萄糖不耐症的发展涉及HBP诱导的胆固醇反应,从而损害了一种或多种基于远端膜的GLUT4调节机制。这种理解的进步将重塑我们对胰岛素抵抗发展的理解,并确定预防和/或治疗的新治疗靶标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEFFREY S ELMENDORF其他文献
JEFFREY S ELMENDORF的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEFFREY S ELMENDORF', 18)}}的其他基金
Cholesterol Toxicity as a Promising Target for Diabetes Prevention
胆固醇毒性是预防糖尿病的一个有希望的目标
- 批准号:
9596420 - 财政年份:2018
- 资助金额:
$ 39.35万 - 项目类别:
Mechanisms of Membrane-Based Insulin Resistance & Therapeutic Reversal Strategies
膜型胰岛素抵抗的机制
- 批准号:
7778871 - 财政年份:2009
- 资助金额:
$ 39.35万 - 项目类别:
Mechanisms of Membrane-Based Insulin Resistance & Therapeutic Reversal Strategies
膜型胰岛素抵抗的机制
- 批准号:
7566652 - 财政年份:2009
- 资助金额:
$ 39.35万 - 项目类别:
Mechanisms of Membrane-Based Insulin Resistance & Therapeutic Reversal Strategies
膜型胰岛素抵抗的机制
- 批准号:
8212266 - 财政年份:2009
- 资助金额:
$ 39.35万 - 项目类别:
Mechanisms of Membrane-Based Insulin Resistance & Therapeutic Reversal Strategies
膜型胰岛素抵抗的机制
- 批准号:
8018039 - 财政年份:2009
- 资助金额:
$ 39.35万 - 项目类别:
Mechanisms of Membrane-Based Insulin Resistance & Therapeutic Reversal Strategies
膜型胰岛素抵抗的机制
- 批准号:
8000672 - 财政年份:2009
- 资助金额:
$ 39.35万 - 项目类别:
CHROMIUM ENHANCES INSULIN & GLUT4 ACTION VIA LIPID RAFTS
铬增强胰岛素
- 批准号:
6820666 - 财政年份:2004
- 资助金额:
$ 39.35万 - 项目类别:
相似海外基金
Deconstructing the diet-induced remodeling of adipose tissue
解构饮食诱导的脂肪组织重塑
- 批准号:
10567053 - 财政年份:2023
- 资助金额:
$ 39.35万 - 项目类别:
Hypertrophic adipocytes as biophysical mediators of breast cancer progression
肥大脂肪细胞作为乳腺癌进展的生物物理介质
- 批准号:
10751284 - 财政年份:2023
- 资助金额:
$ 39.35万 - 项目类别:
Role of microglial lysosomes in amyloid-A-beta degradation
小胶质细胞溶酶体在淀粉样蛋白-A-β降解中的作用
- 批准号:
10734289 - 财政年份:2023
- 资助金额:
$ 39.35万 - 项目类别:
Lipid Metabolism Switch Triggers Invasive and Chemoresistant Epithelial Ovarian Cancer Phenotype
脂质代谢开关触发侵袭性和耐药性上皮性卵巢癌表型
- 批准号:
10680460 - 财政年份:2022
- 资助金额:
$ 39.35万 - 项目类别:
Lipid Metabolism Switch Triggers Invasive and Chemoresistant Epithelial Ovarian Cancer Phenotype
脂质代谢开关触发侵袭性和耐药性上皮性卵巢癌表型
- 批准号:
10522428 - 财政年份:2022
- 资助金额:
$ 39.35万 - 项目类别: