DNA Expansion and Mismatch Repair
DNA 扩增和错配修复
基本信息
- 批准号:9766311
- 负责人:
- 金额:$ 71.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:ATP HydrolysisATP phosphohydrolaseAcidsAddressAttenuatedBindingBiologicalBiotinCAG repeatCellsChimeric ProteinsClipClustered Regularly Interspaced Short Palindromic RepeatsComplexCrystallizationDNADNA RepairDNA StructureDNA-Directed DNA PolymeraseDataDevelopmentDiseaseEngineeringEthersExcisionFailureGeneticGenomeGerm-Line MutationHomologous GeneHuntington DiseaseHydrolysisInstructionKnock-inKnock-in MouseMSH2 geneMSH3 geneMammalian CellMediatingMismatch RepairMolecular ConformationMusMutationNeurodegenerative DisordersNucleotidesOrangesOutcomePathway interactionsProcessProtein ConformationProteinsRepair ComplexResistanceSeriesSideSignal TransductionSiteStreptavidinStructureSystemTechnologyTestingTrinucleotide Repeatsbasecomplex Rendonucleaseexperimental studyin vivomutantnucleasepreventrecruitrepairedsealsmall molecule
项目摘要
ABSTRACT
It is the overall aim of this proposal to dissect the paradoxical mechanism by which the binding of a CAG hairpin
converts an otherwise normal MMR complex into a mutational machine. Mammalian cells have evolved
sophisticated DNA repair systems to correct mispaired or damaged bases and extrahelical loops. Surprisingly,
the eukaryotic mismatch recognition complex, MSH2/MSH3, fails to act as a guardian of the genome and
causes CAG expansion, the lethal mutation underlying Huntington's disease (HD) and more than 20 other
neurodegenerative diseases. In this proposal, we focus on the two key mutagenic steps that cause the
mutation: we will (1) determine why ATP hydrolysis in MSH2-MSH3 fails to signal loop removal, and (2) identify
the endonuclease recruited by the MSH2-MSH3-hairpin complex that incorporates the loop into duplex DNA
completing expansion. In Aim 1A, we will generate two “separation-of-function” mutant KI mice for MSH2-
MSH3, which bind ATP in each subunit, but lack ATP hydrolytic function in one or the other. If loss of hydrolytic
activity in a particular subunit attenuates expansion, then the mutation requires the ATPase activity in that
subunit. In Aim 1B, we will solve the crystal structure of MSH2-MSH3 bound to a repair competent (CA)4 loop or
to the repair-resistant CAG hairpin. Identified are the structural perturbations in the nucleotide-bound MSH2-
MSH3 complex that prevent proper removal of the hairpin loop. In Aim 2, we will identify the canonical and non-
canonical endonuclease machinery that facilitates incorporation of the hairpin loop and completes expansion.
To identify non-canonical machinery, we will develop technology for site-specific capture of endonucleases
“caught in the act” of incising the loops at the CAG tract during expansion. Inserting a DNA site with CRISPR
provides an engineered landing pad for targeting an engineered APEX2 fusion protein. The latter modifies
closely located protein partners with biotin, which can be captured on streptavidin plates. We will test how these
instructions are misinterpreted for “in trans” nicking when MSH2-MSH3 is bound to the CAG hairpin.
Collectively, the proposed experiments pave the way for small molecule development to restore loop removalby
altering the hairpin DNA structure or the protein conformation.
抽象的
本提案的总体目标是剖析 CAG 发夹结合的矛盾机制
将正常的错配修复复合体转变为突变机器。
复杂的 DNA 修复系统可以纠正错配或损坏的碱基和螺旋外环。
真核错配识别复合物 MSH2/MSH3 无法充当基因组的守护者,
导致 CAG 扩张、亨廷顿病 (HD) 和其他 20 多种疾病的致命突变
在本提案中,我们重点关注导致神经退行性疾病的两个关键诱变步骤。
突变:我们将 (1) 确定为什么 MSH2-MSH3 中的 ATP 水解无法发出环路去除信号,并且 (2) 确定
由 MSH2-MSH3-发夹复合物招募的核酸内切酶,将环整合到双链 DNA 中
在目标 1A 中,我们将为 MSH2 生成两只“功能分离”突变 KI 小鼠
MSH3,其在每个亚基中结合 ATP,但如果失去水解,则其中一个或另一个亚基缺乏 ATP 水解功能。
特定亚基中的活性减弱了扩增,那么突变需要该亚基中的 ATP 酶活性
在目标 1B 中,我们将解析与修复能力 (CA)4 环或结合的 MSH2-MSH3 的晶体结构。
确定了核苷酸结合的 MSH2- 中的结构扰动。
MSH3 复合物会阻止发夹环的正确去除。在目标 2 中,我们将识别典型的和非典型的。
经典的核酸内切酶机制,有助于合并发夹环并完成扩张。
为了识别非规范机制,我们将开发核酸内切酶位点特异性捕获技术
在扩增过程中“陷入”在 CAG 区域切割环的过程中,使用 CRISPR 插入 DNA 位点。
提供了一个用于靶向工程 APEX2 融合蛋白的工程着陆垫,后者修饰。
位置紧密的蛋白质与生物素结合,可以在链霉亲和素板上捕获,我们将测试它们如何。
当 MSH2-MSH3 与 CAG 发夹结合时,说明会被误解为“反式”切口。
总的来说,所提出的实验为小分子开发恢复环去除铺平了道路
改变发夹 DNA 结构或蛋白质构象。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cynthia Therese McMurray其他文献
Cynthia Therese McMurray的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cynthia Therese McMurray', 18)}}的其他基金
Predicting neurodegeneration in living patients by IR imaging of skin fibroblasts
通过皮肤成纤维细胞的红外成像预测活体患者的神经退行性变
- 批准号:
10433612 - 财政年份:2022
- 资助金额:
$ 71.69万 - 项目类别:
Novel Spectral Biomarkers for Alzheimer's Disease
阿尔茨海默病的新型光谱生物标志物
- 批准号:
10359211 - 财政年份:2021
- 资助金额:
$ 71.69万 - 项目类别:
相似海外基金
Mechanistic Principles of SNARE Disassembly in Neurotransmitter Release
神经递质释放中 SNARE 分解的机制原理
- 批准号:
10824093 - 财政年份:2023
- 资助金额:
$ 71.69万 - 项目类别:
Mechanism and Evolutionary Design of DNA Polymerase Clamp Loaders.
DNA 聚合酶夹钳装载机的机制和进化设计。
- 批准号:
10587243 - 财政年份:2023
- 资助金额:
$ 71.69万 - 项目类别:
Determining the Role of p97 Adaptor UBXD8 in Peroxisome Function
确定 p97 适配器 UBXD8 在过氧化物酶体功能中的作用
- 批准号:
10534586 - 财政年份:2022
- 资助金额:
$ 71.69万 - 项目类别:
Molecular Mechanisms of The Human Mitochondrial ABC Transporter ABCB10
人类线粒体 ABC 转运蛋白 ABCB10 的分子机制
- 批准号:
10596638 - 财政年份:2022
- 资助金额:
$ 71.69万 - 项目类别:
Peroxisomal fatty acid metabolism in genetic and age-related disorders
遗传和年龄相关疾病中的过氧化物酶体脂肪酸代谢
- 批准号:
10559614 - 财政年份:2022
- 资助金额:
$ 71.69万 - 项目类别: