An Ultra High-Density Virtual Array with Nonlinear Processing of Multimodal Neural Recordings
具有多模态神经记录非线性处理的超高密度虚拟阵列
基本信息
- 批准号:9766300
- 负责人:
- 金额:$ 22.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAffectAlgorithmsAreaBehaviorBrainCalciumCalcium SignalingCaliberCellsChemicalsCollaborationsDataData CollectionData SetDepositionDevelopmentDimensionsDiseaseDystoniaElectrical EngineeringElectrocorticogramElectrodesElectrophysiology (science)EpilepsyExploratory/Developmental GrantFunctional disorderGeometryGoalsImageIndividualLeadLearningMeasurementMental DepressionMethodsModalityModelingMultimodal ImagingNervous system structureNeuronsNeurosciencesNoiseOpticsOutcomeParkinson DiseasePopulationResearchResolutionScanningSchizophreniaSignal TransductionSurfaceSynaptic PotentialsSystemTechniquesTechnologyTestingbasecomputer frameworkcomputerized data processingdensitydesignelectric impedanceexperienceexperimental studygraphenehigh resolution imagingholistic approachin vivoinnovationmultimodal datamultimodalitynanoparticlenervous system disordernetwork dysfunctionneural circuitnovel strategiesoperationoptical imagingoptogeneticsrelating to nervous systemsensorsignal processingspatial integrationtemporal measurementtwo-photonvirtual
项目摘要
An Ultra High-Density Virtual Array with Nonlinear Processing of Multimodal
Neural Recordings
A major goal of neuroscience is to record the activity of all neurons in an area of
an intact brain and understand the relationship between neural activity and behavior.
However, with current technologies, it is not feasible to have a direct and simultaneous
access to every neuron in a three-dimensional brain area. Here we propose a novel
approach, combining an innovative signal processing method with optical and electrical
recording technologies to `virtually' record from all neurons in a three dimensional
volume. If successful, this approach will allow us to substantially increase the number of
recorded neurons without the need for direct optical or electrical access to each neuron.
The proposed Virtual Array technology has the potential to dramatically increase
the number of simultaneously recorded neurons in an intact brain relatively non-
invasively. The common approaches include high-density electrophysiological probes,
which are highly invasive and also limited in the density of recording, and fast-scanning
optical techniques that have limited temporal resolution. As an alternative approach, we
propose to develop a framework to computationally increase the number of recorded
neurons out of recording data from simultaneous electrophysiology and imaging. The
computational framework will be developed from a dataset in which micro-
electrocorticogram (µECoG) are recorded simultaneously while the activities of the
underlying neurons is recorded with two-photon calcium imaging at multiple cortical
depths. We will virtually reconstruct this single-cell activity by solving appropriate
optimization problem involving forward models for µECoG recordings and calcium
signals. This optimization problem will be solved using alternating convex algorithms.
超高密度虚拟阵列,具有多模式的非线性处理
神经记录
神经科学的主要目标是记录所有神经的活动
完整的大脑并了解神经活动与行为之间的关系。
但是,使用当前的技术,直接且简单的
进入三维脑区域中的每个神经元。在这里,我们提出了一本小说
方法,将创新的信号处理方法与光学和电气相结合
在三维中,记录所有神经元的“虚拟”记录
体积。如果成功,这种方法将使我们大大增加
记录的神经元无需直接光学或电气进入每个神经元。
提出的虚拟阵列技术有可能大幅度增加
完整大脑中简单记录的神经元的数量相对非 -
侵入性。常见方法包括高密度电生理问题,
这是高度侵入性的,并且在记录的密度和快速扫描中也有限
临时分辨率有限的光学技术。作为另一种方法,我们
提出开发一个框架以增加记录的数量的框架
从同时电生理学和成像中记录数据中的神经元。这
计算框架将从微观的数据集开发
简单地记录了电化图(µECOG),而
在多个皮质上使用两光子钙成像记录基础神经元
深度。我们将通过解决适当的
优化问题涉及µEcog记录和钙的正向模型
信号。该优化问题将使用替代凸算法解决。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Duygu Kuzum其他文献
Duygu Kuzum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Duygu Kuzum', 18)}}的其他基金
E-Organoids: Functional Brain Organoids Co-grafted with Transparent Microthreads
E-类器官:与透明微丝共同移植的功能性大脑类器官
- 批准号:
10002957 - 财政年份:2020
- 资助金额:
$ 22.89万 - 项目类别:
相似国自然基金
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
社交网络上观点动力学的重要影响因素与高效算法
- 批准号:62372112
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 22.89万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 22.89万 - 项目类别:
Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
- 批准号:
10839518 - 财政年份:2023
- 资助金额:
$ 22.89万 - 项目类别:
GPU-based SPECT Reconstruction Using Reverse Monte Carlo Simulations
使用反向蒙特卡罗模拟进行基于 GPU 的 SPECT 重建
- 批准号:
10740079 - 财政年份:2023
- 资助金额:
$ 22.89万 - 项目类别:
Extending Reach, Accuracy, and Therapeutic Capabilities: A Soft Robot for Peripheral Early-Stage Lung Cancer
扩大范围、准确性和治疗能力:用于周围早期肺癌的软机器人
- 批准号:
10637462 - 财政年份:2023
- 资助金额:
$ 22.89万 - 项目类别: