Molecular and cellular mechanisms governing interneuron development and connectivity
控制中间神经元发育和连接的分子和细胞机制
基本信息
- 批准号:9765678
- 负责人:
- 金额:$ 69.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:ANK3 geneAction PotentialsAddressAffectAxonBindingBiochemicalBiochemical GeneticsBrainBrain DiseasesCell Adhesion MoleculesCellsCytoskeletonDataDefectDevelopmentDiseaseDistalElectroporationEphrinsEpilepsyExpression ProfilingGoalsInterneuronsKnockout MiceKnowledgeLightLinkMaintenanceMediatingMolecularMorphologyNeocortexNeural Cell Adhesion Molecule L1NeuronsNeuropilin-1OutputPathway interactionsPlayPopulationPresynaptic TerminalsProteinsPyramidal CellsRNA InterferenceRNA interference screenReportingRoleSchizophreniaSignal PathwaySiteSpecificitySpectrinStructureSurfaceSynapsesTechnologyTestingTimeUnited Statesautism spectrum disorderbaseexcitatory neuronexperimental studygenetic approachhigh resolution imaginghippocampal pyramidal neuronin uteroin vivoinsightknock-downmutantneocorticalnerve supplynetrin receptorneuronal circuitrynovelpostnatalpresynapticscaffoldtooltranscriptome sequencingvirtual
项目摘要
PROJECT SUMMARY/ABSTRACT
Proper assembly and functioning of neuronal circuits in the neocortex, a brain structure critical for all higher-
order functions, relies on the formation of specific synaptic connections between excitatory pyramidal neurons
(PyNs) and different types of inhibitory GABAergic interneurons. One subset of interneurons that exerts powerful
control over PyN spiking is the chandelier cell (ChC), which forms connections specifically at the site of action
potential initiation in PyNs, referred to as the axon initial segment (AIS). Due to the unique connections formed
between the terminals of ChC axonal arbors and the AISs of large populations of PyNs, ChCs are ideally suited
to control the output of excitatory cortical networks. Hence, it is not surprising that ChC connectivity defects are
linked to brain disorders, such as schizophrenia and autism spectrum disorder. Despite the importance of ChCs,
the molecular mechanisms underlying their subcellular innervation of PyN AISs are unknown. To approach this,
we initiated an in utero electroporation (IUE)-based in vivo RNAi screen of known neocortical PyN-expressed
axonal cell adhesion molecules (CAMs) and select Ephs/ephrins. Strikingly, of all the molecules tested, we found
the CAM L1CAM to be the only protein required for PyN AIS innervation by ChCs. In addition, based on single-
ChC RNAseq data, we investigated the role of ChC-expressed netrin receptor Unc5b in ChC/PyN AIS innervation
and found that it plays a key role in ChC axon terminal development and connectivity. Our findings provide a
unique entry point for studies on the molecular basis of ChC/PyN connectivity. This application aims to elucidate
how PyN L1CAM governs selective AIS innervation, to identify L1CAM’s presynaptic binding partner(s) on ChCs,
and to scrutinize the mechanism of Unc5b in ChC axon terminal development and connectivity. To this end, Aim
1 will use molecular tools to disrupt interactions between L1CAM and the AIS cytoskeleton to assess whether
cytoskeleton-mediated L1CAM clustering at the AIS is required for proper ChC/PyN AIS innervation. High
resolution imaging will be performed to investigate the distribution of surface L1CAM on the AIS and distal axon.
Also, inducible RNAi constructs delivered by IUE to temporally regulate PyN L1CAM levels in vivo will be used
to determine whether PyN L1CAM is required for the establishment and/or maintenance of ChC/PyN innervation.
Aim 2 will identify the presynaptic binding partner(s) of L1CAM on ChC terminals. Our preliminary data suggest
that neuropilin-1 (Nrp1) is the L1CAM partner on ChCs required for ChC/PyN innervation. This will be tested by
depleting Nrp1 in ChCs, using RNAi technology and conditional Nrp1 knockout mice. The Nrp1 domain(s)
required for L1CAM binding will also be defined. Aim 3 will determine whether Unc5b governs ChC cartridge
development by regulating terminal axon branching. We will also test whether the LARG/RhoA/ROCK pathway
mediates Unc5b’s effect on ChC axon terminal development and connectivity using molecular/cellular tools and
ChC-targeting IUE. Together, our studies will provide first insight into the mechanisms governing ChC/PyN
connectivity and shed new light on the connectivity defects underlying common brain disorders.
!
项目摘要/摘要
在新皮层中,神经元回路的适当组装和功能,这是所有较高的大脑结构
顺序功能,依赖于兴奋性金字塔神经元之间特定突触连接的形成
(Pyns)和不同类型的抑制性GABA能中间神经元。发挥强大的中间神经元的一个子集
对Pyn峰值的控制是枝形吊灯细胞(CHC),该单元格是在动作部位专门形成的连接
Pyns中的潜在计划,称为轴突初始段(AIS)。由于形成了独特的连接
CHC轴突轴向末端和大量Pyns群体之间,CHC非常适合
控制兴奋性皮质网络的输出。因此,CHC连接性缺陷是
与脑部疾病有关,例如精神分裂症和自闭症谱系障碍。尽管CHC很重要,但
其亚细胞支配Pyn AISS的分子机制尚不清楚。为了解决这个问题,
我们启动了一个基于已知新皮层Pyn表达的基于子宫内电穿孔(IUE)的体内RNAi屏幕
轴突细胞粘附分子(CAM)和选择Ephs/ephrins。令人惊讶的是,在所有测试的分子中,我们发现
CAM L1CAM是CHCS神经支配所需的唯一蛋白质。此外,基于单个
CHC RNASEQ数据,我们研究了CHC表达的Netrin受体UNC5B在CHC/PYN AIS神经上的作用
并发现它在CHC轴突终端的发展和连通性中起关键作用。我们的发现提供了
基于CHC/PYN连接性分子基础的研究的独特入口点。该应用程序旨在阐明
Pyn L1CAM如何控制选择性AIS神经,以确定L1CAM在CHC上的突触前结合伴侣,
并仔细检查CHC轴突终端发育和连通性中UNC5B的机制。为此,目标
1将使用分子工具破坏L1CAM与AIS细胞骨架之间的相互作用,以评估是否是否
适当的CHC/PYN AIS神经需要在AIS处进行细胞骨架介导的L1CAM聚类。高的
将进行分辨率成像,以研究表面L1CAM在AIS和远端轴突上的分布。
此外,将使用IUE提供的诱导RNAi构建体,用于在体内暂时调节Pyn L1CAM水平
确定建立和/或维持CHC/PYN神经支配是否需要Pyn L1CAM。
AIM 2将确定CHC终端上L1CAM的突触前结合伴侣。我们的初步数据暗示
该Neuropilin-1(NRP1)是CHC/PYN神经支配所需的CHC的L1CAM合作伙伴。这将通过
使用RNAi技术和条件NRP1敲除小鼠在CHC中耗尽NRP1。 NRP1域
L1CAM结合所需的也将定义。 AIM 3将确定UNC5B是否控制CHC墨盒
通过调节末端轴突分支来开发。我们还将测试Larg/Rhoa/Rock Pathway是否
使用分子/细胞工具和
CHC靶向。总之,我们的研究将首先深入了解有关CHC/PYN的机制
连通性并为常见脑疾病的连通性缺陷提供了新的启示。
呢
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Linda Van Aelst其他文献
Linda Van Aelst的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Linda Van Aelst', 18)}}的其他基金
Neurodevelopmental disorder-associated Rho regulators in neocortical development
新皮质发育中神经发育障碍相关的 Rho 调节因子
- 批准号:
10339420 - 财政年份:2020
- 资助金额:
$ 69.07万 - 项目类别:
Neurodevelopmental disorder-associated Rho regulators in neocortical development
新皮质发育中神经发育障碍相关的 Rho 调节因子
- 批准号:
10571903 - 财政年份:2020
- 资助金额:
$ 69.07万 - 项目类别:
Molecular and cellular mechanisms governing interneuron development and connectivity
控制中间神经元发育和连接的分子和细胞机制
- 批准号:
9902549 - 财政年份:2019
- 资助金额:
$ 69.07万 - 项目类别:
Molecular and cellular mechanisms governing interneuron development and connectivity
控制中间神经元发育和连接的分子和细胞机制
- 批准号:
10088479 - 财政年份:2019
- 资助金额:
$ 69.07万 - 项目类别:
Molecular and cellular mechanisms governing interneuron development and connectivity
控制中间神经元发育和连接的分子和细胞机制
- 批准号:
10334416 - 财政年份:2019
- 资助金额:
$ 69.07万 - 项目类别:
Molecular and cellular mechanisms governing interneuron development and connectivity
控制中间神经元发育和连接的分子和细胞机制
- 批准号:
10558482 - 财政年份:2019
- 资助金额:
$ 69.07万 - 项目类别:
The central amygdala circuits in motivated behaviors
动机行为中的中央杏仁核回路
- 批准号:
10543115 - 财政年份:2014
- 资助金额:
$ 69.07万 - 项目类别:
Rho regulator-mediated signaling in interneuron development
中间神经元发育中 Rho 调节器介导的信号传导
- 批准号:
8610366 - 财政年份:2013
- 资助金额:
$ 69.07万 - 项目类别:
Rho regulator-mediated signaling in interneuron development
中间神经元发育中 Rho 调节器介导的信号传导
- 批准号:
8478955 - 财政年份:2013
- 资助金额:
$ 69.07万 - 项目类别:
Rho regulator-mediated signaling in interneuron development
中间神经元发育中 Rho 调节器介导的信号传导
- 批准号:
8829348 - 财政年份:2013
- 资助金额:
$ 69.07万 - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:12202147
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
相似海外基金
Molecular and cellular mechanisms governing interneuron development and connectivity
控制中间神经元发育和连接的分子和细胞机制
- 批准号:
9902549 - 财政年份:2019
- 资助金额:
$ 69.07万 - 项目类别:
Molecular and cellular mechanisms governing interneuron development and connectivity
控制中间神经元发育和连接的分子和细胞机制
- 批准号:
10088479 - 财政年份:2019
- 资助金额:
$ 69.07万 - 项目类别:
Molecular and cellular mechanisms governing interneuron development and connectivity
控制中间神经元发育和连接的分子和细胞机制
- 批准号:
10334416 - 财政年份:2019
- 资助金额:
$ 69.07万 - 项目类别:
Molecular and cellular mechanisms governing interneuron development and connectivity
控制中间神经元发育和连接的分子和细胞机制
- 批准号:
10558482 - 财政年份:2019
- 资助金额:
$ 69.07万 - 项目类别:
Molecular Organization and Function of Paranodal Axo-glial Junctions
节旁轴胶质细胞连接的分子组织和功能
- 批准号:
10653846 - 财政年份:2001
- 资助金额:
$ 69.07万 - 项目类别: