Mechanisms of DNA hand-off during lesion repair in BER and NER supplement
BER 和 NER 补充中损伤修复过程中 DNA 传递的机制
基本信息
- 批准号:9895224
- 负责人:
- 金额:$ 9.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-06 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:A-Form DNAAddressAffectAffinityAmino AcidsBase Excision RepairsBindingBinding ProteinsBinding SitesBiochemicalCancer EtiologyCancerousCellsChemistryComplexDNADNA BindingDNA Binding DomainDNA DamageDNA RepairDNA Repair EnzymesDNA Repair GeneDNA Repair PathwayDNA biosynthesisDNA damage checkpointDNA glycosylaseDNA lesionDNA-Protein InteractionDNA-dependent protein kinaseDataDefectDiseaseEnvironmental CarcinogensEnzyme InteractionEnzymesEventExposure toFluorescenceFoundationsGenetic RecombinationGenomeGenomic InstabilityGoalsHandHereditary DiseaseIndividualInvestigationKineticsKnowledgeLabelLeadLengthLesionMalignant NeoplasmsMetabolicMetabolismMethodologyModelingMonitorMutationN-terminalNucleotide Excision RepairPhosphopeptidesPhosphorylationPlayPositioning AttributePost-Translational Protein ProcessingProcessProtein Binding DomainProteinsRadiationReporterResearchRoleSingle-Stranded DNASiteSpecificityStructureSystemTestingTherapeutic InterventionTimeToxic Environmental SubstancesWinged HelixWorkXPA genebasecombatds-DNAenvironmental agentfluorophoregenome integrityrecruitrepairedreplication factor Aresponserole modelscaffoldsingle moleculexeroderma pigmentosum group A complementing protein
项目摘要
Exposure to environmental toxins, radiation and errors in endogenous DNA metabolism give rise to DNA
damage. Knowledge of the cellular DNA repair mechanisms that correct such DNA lesions are vital towards
combating genomic instability – a prevailing cause of cancers and associated disorders. To correct such errors,
double stranded DNA is unwound and the transiently opened single-stranded DNA (ssDNA) is protected and
coated by Replication Protein A (RPA), a high affinity multi-domain enzyme. Formation of RPA-ssDNA
complexes trigger the DNA repair checkpoint response and is a key step in activating most DNA repair pathways.
ssDNA-bound by RPA is handed off to lesion-specific DNA repair proteins. The precise mechanisms of how this
functional specificity is achieved is poorly resolved. Towards addressing this gap in knowledge, our long-term
goals are to answer the following questions: a) RPA physically interacts with over two dozen DNA processing
enzymes; how are these interactions determined and prioritized? b) RPA binds to ssDNA with high affinity (KD
>10-10 M); how do DNA metabolic enzymes that bind to DNA with micromolar affinities remove RPA? c) Does
RPA play a role in positioning the recruited enzymes (with appropriate polarity) onto the DNA? d) How are the
DNA and protein interaction activities of RPA tuned by post translational modifications? To address these
questions, and to investigate the dynamics of RPA in the presence of multiple other DNA binding enzymes, we
have successfully developed an experimental strategy where the individual DNA binding domains (DBDs) of
RPA are labeled with a fluorophore. Upon binding to ssDNA, a robust change in fluorescence is observed and
thus serves as a real-time reporter of its dynamics on DNA. We achieved this through incorporation of noncanonical
amino acids and attachment of fluorophores using strain promoted click chemistry. Using this
methodology, we have uncovered how each domain within RPA binds/dissociates on ssDNA and presents a
new paradigm for RPA function. There are four DBDs (A, B, C and D) in RPA and, for over three decades, DBDA
& B have been thought to bind with highest affinity based on biochemical investigation of isolated DBDs. These
findings have served as a foundation for all models of RPA in DNA replication, repair and recombination. Our
work capturing RPA dynamics in the full-length context reveals the opposite, where DBDs A & B are highly
dynamic whereas DBDs C & D are stable. These startling findings completely alter the existing paradigm for
RPA function and form the basis of the proposed work investigating how specific RPA interacting proteins (RIPs)
gain access to DNA. Specifically, RPA modeling by NEIL1 and UNG2 during base excision repair (Aim 1) and
by XPA during nucleotide excision repair (Aim 2) will be investigated. In addition, the role of phosphorylation in
determining RPA specificity in DNA repair will be explored (Aim 3). Results from the proposed work will delineate
how RIPs interact with RPA, remodel its DBDs and gain access to the buried ssDNA.
暴露于环境毒素,辐射和内源性DNA代谢中的误差会引起DNA
损害。了解纠正此类DNA病变的细胞DNA修复机制至关重要
打击基因组不稳定性 - 癌症和相关疾病的主要原因。要纠正此类错误,
双链DNA已解开,瞬时打开的单链DNA(ssDNA)受到保护,并受到保护,并且
通过复制蛋白A(RPA)涂层,一种高亲和力多域酶。 RPA-SSDNA的形成
复合物触发DNA修复检查点响应,是激活大多数DNA修复途径的关键步骤。
将RPA与SSDNA结合,将其移交给病变特异性的DNA修复蛋白。如何确切机制
实现功能特异性的解决方案很差。为了解决知识中的这一差距,我们的长期
目标是回答以下问题:a)RPA与超过两打DNA处理进行物理互动
酶;这些相互作用如何确定和优先级? b)RPA与高亲和力(KD)的ssDNA结合
> 10-10 m);与微摩尔亲和力与DNA结合的DNA代谢酶如何消除RPA? c)做
RPA在将招募的酶(具有适当的极性)定位到DNA中发挥作用? d)如何
RPA的DNA和蛋白质相互作用活性是通过翻译后修饰调整的?解决这些
问题,并在存在多种其他DNA结合酶的情况下研究RPA的动力学,我们
已经成功制定了一种实验策略,其中单个DNA结合域(DBD)的
RPA用荧光团标记。与ssDNA结合后,观察到荧光的稳健变化,并
因此,它是其在DNA上动态的实时记者。我们通过纳入非规范性来实现这一目标
使用菌株促进氨基酸和荧光团的附着点击化学。使用此
方法论,我们已经发现了RPA中的每个域如何在ssDNA上结合/解离并呈现A
RPA功能的新范式。 RPA中有四个DBD(a,b,c和d),在三十年中,DBDA
&B被认为基于对孤立DBD的生化研究的最高亲和力结合。这些
调查结果已成为DNA复制,修复和重组中所有RPA模型的基础。我们的
在全长上下文中捕获RPA动力学的工作揭示了相反,其中DBDS A&B高度
动态,而DBDS C&D稳定。这些开始的发现完全改变了现有的范式
RPA功能并构成了拟议工作的基础,研究了特定的RPA相互作用蛋白(RIPS)
进入DNA。具体而言,基本惊喜维修期间Neil1和UNG2对RPA建模(AIM 1)和
XPA在核苷酸惊喜维修期间(AIM 2)将进行研究。另外,磷酸化在
将探索DNA修复中的RPA特异性(AIM 3)。提议的工作的结果将描述
RIPS如何与RPA相互作用,重塑其DBD并获得对内置ssDNA的访问。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edwin Antony其他文献
Edwin Antony的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edwin Antony', 18)}}的其他基金
Coordination of DNA Metabolism by Replication Protein A
复制蛋白 A 协调 DNA 代谢
- 批准号:
10623523 - 财政年份:2023
- 资助金额:
$ 9.84万 - 项目类别:
Mechanisms of RPA, Recombinases, and Mediators in Homologous Recombination
同源重组中 RPA、重组酶和介体的机制
- 批准号:
10589636 - 财政年份:2022
- 资助金额:
$ 9.84万 - 项目类别:
Mechanisms of RPA, Recombinases, and Mediators in Homologous Recombination
同源重组中 RPA、重组酶和介体的机制
- 批准号:
10576598 - 财政年份:2022
- 资助金额:
$ 9.84万 - 项目类别:
Acquisition of an Optima Analytical Ultracentrifuge
购买 Optima 分析超速离心机
- 批准号:
10177290 - 财政年份:2021
- 资助金额:
$ 9.84万 - 项目类别:
Mechanisms of DNA hand-off during lesion repair in BER and NER
BER 和 NER 损伤修复过程中 DNA 传递的机制
- 批准号:
10377257 - 财政年份:2019
- 资助金额:
$ 9.84万 - 项目类别:
Mechanisms of RPA, Recombinases, and Mediators in Homologous Recombination
同源重组中 RPA、重组酶和介体的机制
- 批准号:
10810537 - 财政年份:2019
- 资助金额:
$ 9.84万 - 项目类别:
Mechanisms of DNA hand-off during lesion repair in BER and NER
BER 和 NER 损伤修复过程中 DNA 传递的机制
- 批准号:
10334423 - 财政年份:2019
- 资助金额:
$ 9.84万 - 项目类别:
Mechanisms of DNA hand-off during lesion repair in BER and NER
BER 和 NER 损伤修复过程中 DNA 传递的机制
- 批准号:
9981216 - 财政年份:2019
- 资助金额:
$ 9.84万 - 项目类别:
Mechanisms of RPA, Recombinases, and Mediators in Homologous Recombination
同源重组中 RPA、重组酶和介体的机制
- 批准号:
10015322 - 财政年份:2019
- 资助金额:
$ 9.84万 - 项目类别:
Mechanisms of RPA, Recombinases, and Mediators in Homologous Recombination
同源重组中 RPA、重组酶和介体的机制
- 批准号:
10238051 - 财政年份:2019
- 资助金额:
$ 9.84万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanisms of DNA hand-off during lesion repair in BER and NER
BER 和 NER 损伤修复过程中 DNA 传递的机制
- 批准号:
10334423 - 财政年份:2019
- 资助金额:
$ 9.84万 - 项目类别:
Mechanisms of DNA hand-off during lesion repair in BER and NER
BER 和 NER 损伤修复过程中 DNA 传递的机制
- 批准号:
9981216 - 财政年份:2019
- 资助金额:
$ 9.84万 - 项目类别:
Mechanisms of DNA hand-off during lesion repair in BER and NER
BER 和 NER 损伤修复过程中 DNA 传递的机制
- 批准号:
10093089 - 财政年份:2019
- 资助金额:
$ 9.84万 - 项目类别:
Studies in Poxvirus Host Range Genes and Tropism
痘病毒宿主范围基因和趋向性研究
- 批准号:
9384142 - 财政年份:2016
- 资助金额:
$ 9.84万 - 项目类别:
Contribution of catabolite control protein A to group A streptococcal virulence
分解代谢物控制蛋白 A 对 A 组链球菌毒力的贡献
- 批准号:
8300803 - 财政年份:2011
- 资助金额:
$ 9.84万 - 项目类别: