Cortical Control of Motor Learning

运动学习的皮质控制

基本信息

  • 批准号:
    9767357
  • 负责人:
  • 金额:
    $ 4.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-01-01 至 2020-01-31
  • 项目状态:
    已结题

项目摘要

Project Summary Motor learning is a fundamental form of learning important for the well-being of many animal species including humans. The importance of learned motor programs is underscored when they are compromised in motor disorders such as multiple sclerosis and ALS. Neural circuit mechanisms of motor learning have been extensively studied, however, precise plasticity mechanisms of distinct neuron types underlying motor learning are not well understood. We address this issue in the motor cortex, a critical brain region responsible for motor learning. The central hypothesis in this proposal is that subtype-specific changes of inhibitory neurons regulate the plasticity of excitatory circuits necessary for motor learning. To directly visualize these plasticity events within the motor cortex during motor learning, we will apply in vivo two-photon imaging chronically in awake mice performing a motor learning task over weeks, focusing on three major neuron types in the motor cortex (principal excitatory neurons, parvalbumin-expressing inhibitory neurons (PV-INs), and somatostatin-expressing inhibitory neurons (SOM-INs)). We recently developed a lever-press task as a motor learning paradigm for head-fixed mice. We found that learning of this task over two weeks induces a novel and reproducible activity pattern in motor cortex excitatory neuron ensembles. This activity change coincided with a turnover of dendritic spines, the major postsynaptic sites of excitatory synapses, on the excitatory neurons (Peters et al. Nature 2014). Following up on these initial findings, this proposal aims to reveal the role of inhibitory circuits in regulating the plasticity of excitatory circuits. In Aims 1&2, we will characterize the activity and synapse number of PV- and SOM-INs during learning. We hypothesize that motor learning transiently increases PV inhibition and decreases SOM inhibition. We will test this hypothesis by chronically imaging the activity of PV- and SOM-INs using GCaMP6f and their axonal presynaptic terminals. In Aim 3, we will test the hypothesis that the decrease in SOM inhibition is important for excitatory synaptic plasticity and learning. We will test this by manipulating SOM-IN activity using optogenetics and examine the effect on learning and dendritic spine turnover. Finally in Aim 4, we will develop additional motor learning paradigms for head-fixed mice, which will be combined with above experiments in the future to test how generalizable our findings on plasticity mechanisms are to various tasks. These experiments combine cutting-edge technologies including chronic high-resolution two-photon imaging, behavioral tasks by head-fixed mice, mouse genetics to label specific neuron types and optogenetics. These experiments will reveal fine-scale circuit plasticity underlying motor learning and also establish a paradigm that can be applied to other forms of learning and behaviors in the future.
项目概要 运动学习是学习的基本形式,对许多动物的福祉很重要 包括人类在内的物种。当学习到的运动程序被 多发性硬化症和 ALS 等运动障碍受到损害。神经回路机制 运动学习已被广​​泛研究,然而,不同的运动学习的精确可塑性机制 运动学习背后的神经元类型尚不清楚。我们在电机中解决这个问题 皮质,负责运动学习的关键大脑区域。该提案的中心假设是 抑制性神经元的亚型特异性变化调节兴奋性回路的可塑性 运动学习所必需的。直接可视化运动皮层内的这些可塑性事件 在运动学习过程中,我们将在清醒的小鼠身上长期应用体内双光子成像,执行 为期数周的运动学习任务,重点关注运动皮层中的三种主要神经元类型(主要 兴奋性神经元、表达小清蛋白的抑制性神经元 (PV-IN) 和表达生长抑素的神经元 抑制性神经元(SOM-IN))。 我们最近开发了一种杠杆按压任务作为头部固定小鼠的运动学习范例。我们 发现在两周内学习这项任务会引发一种新颖且可重复的活动模式 运动皮层兴奋性神经元群。这种活性变化与树突的周转同时发生 棘是兴奋性突触的主要突触后位点,位于兴奋性神经元上(Peters 等,2016)。 自然 2014)。根据这些初步发现,该提案旨在揭示抑制的作用 调节兴奋性电路可塑性的电路。在目标 1 和 2 中,我们将描述活动的特征并 学习期间 PV-IN 和 SOM-IN 的突触数量。我们假设运动学习是短暂的 增加 PV 抑制并减少 SOM 抑制。我们将通过长期测试这个假设 使用 GCaMP6f 及其轴突突触前末梢对 PV-和 SOM-IN 的活动进行成像。瞄准 3,我们将检验以下假设:SOM 抑制的减少对于兴奋性突触很重要 可塑性和学习性。我们将通过使用光遗传学操纵 SOM-IN 活性来测试这一点 检查对学习和树突棘周转的影响。最后,在目标 4 中,我们将开发更多 头部固定小鼠的运动学习范例,将与上述实验相结合 未来将测试我们关于可塑性机制的发现如何推广到各种任务。这些 实验结合了尖端技术,包括长期高分辨率双光子成像, 头部固定小鼠的行为任务、标记特定神经元类型的小鼠遗传学和光遗传学。 这些实验将揭示运动学习背后的精细电路可塑性,并建立一个 未来可以应用于其他形式的学习和行为的范式。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Takaki Komiyama其他文献

Takaki Komiyama的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Takaki Komiyama', 18)}}的其他基金

Deconstructing Functional Circuits of Motor Cortex During Motor Learning
解构运动学习过程中运动皮层的功能电路
  • 批准号:
    10624891
  • 财政年份:
    2022
  • 资助金额:
    $ 4.58万
  • 项目类别:
Deconstructing functional circuits of motor cortex during motor learning
运动学习过程中运动皮层功能回路的解构
  • 批准号:
    10521778
  • 财政年份:
    2022
  • 资助金额:
    $ 4.58万
  • 项目类别:
Context-dependent plasticity of adult-born neurons
成年神经元的上下文依赖性可塑性
  • 批准号:
    10653490
  • 财政年份:
    2020
  • 资助金额:
    $ 4.58万
  • 项目类别:
Context-dependent plasticity of adult-born neurons
成年神经元的上下文依赖性可塑性
  • 批准号:
    10577866
  • 财政年份:
    2020
  • 资助金额:
    $ 4.58万
  • 项目类别:
Context-dependent plasticity of adult-born neurons
成年神经元的上下文依赖性可塑性
  • 批准号:
    10728389
  • 财政年份:
    2020
  • 资助金额:
    $ 4.58万
  • 项目类别:
Context-dependent plasticity of adult-born neurons
成年神经元的上下文依赖性可塑性
  • 批准号:
    10112885
  • 财政年份:
    2020
  • 资助金额:
    $ 4.58万
  • 项目类别:
Inter-area communications in a decision-making circuit
决策电路中的区域间通信
  • 批准号:
    9978533
  • 财政年份:
    2020
  • 资助金额:
    $ 4.58万
  • 项目类别:
Correlated light and ultrastructural imaging of learning-related synaptic plasticity
学习相关突触可塑性的相关光和超微结构成像
  • 批准号:
    9979592
  • 财政年份:
    2020
  • 资助金额:
    $ 4.58万
  • 项目类别:
Context-dependent plasticity of adult-born neurons
成年神经元的上下文依赖性可塑性
  • 批准号:
    10350591
  • 财政年份:
    2020
  • 资助金额:
    $ 4.58万
  • 项目类别:
Cortical Control of Motor Learning
运动学习的皮质控制
  • 批准号:
    10349469
  • 财政年份:
    2015
  • 资助金额:
    $ 4.58万
  • 项目类别:

相似国自然基金

生物炭原位修复底泥PAHs的老化特征与影响机制
  • 批准号:
    42307107
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
光老化微塑料持久性自由基对海洋中抗生素抗性基因赋存影响机制
  • 批准号:
    42307503
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
METTL3通过m6A甲基化修饰NADK2调节脯氨酸代谢和胶原合成影响皮肤光老化的机制研究
  • 批准号:
    82360625
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
来源和老化过程对大气棕碳光吸收特性及环境气候效应影响的模型研究
  • 批准号:
    42377093
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
河口潮滩中轮胎磨损颗粒的光老化特征及对沉积物氮素转化的影响与机制
  • 批准号:
    42307479
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
  • 批准号:
    10676358
  • 财政年份:
    2024
  • 资助金额:
    $ 4.58万
  • 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
  • 批准号:
    10749539
  • 财政年份:
    2024
  • 资助金额:
    $ 4.58万
  • 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 4.58万
  • 项目类别:
Microscopy and Image Analysis Core
显微镜和图像分析核心
  • 批准号:
    10557025
  • 财政年份:
    2023
  • 资助金额:
    $ 4.58万
  • 项目类别:
Designing novel therapeutics for Alzheimer’s disease using structural studies of tau
利用 tau 蛋白结构研究设计治疗阿尔茨海默病的新疗法
  • 批准号:
    10678341
  • 财政年份:
    2023
  • 资助金额:
    $ 4.58万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了