Cardiac microlesion formation during invasive pneumococcal disease
侵袭性肺炎球菌疾病期间心脏微病变的形成
基本信息
- 批准号:9891766
- 负责人:
- 金额:$ 45.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-11-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AcetatesAdultAdverse eventAntibodiesAntioxidantsAreaArrhythmiaAttenuatedAutopsyBacteremiaBloodBlood CirculationCarbonCardiacCardiac Electrophysiologic TechniquesCardiac MyocytesCardiotoxicityCell DeathCell membraneCellsCessation of lifeClinicalCommunitiesDiseaseDropsEnzymesEventGene ExpressionGenesGlucoseGlucose-6-PhosphateGoalsGram-Positive BacteriaGram-Positive CocciHeartHeart InjuriesHeart failureHumanHydrogen PeroxideIn VitroIndividualInflammatoryInvadedIonsLearningLinkMetabolicMetabolismMicrobial BiofilmsMusMutationMyocardialMyocardial InfarctionMyocardiumPassive ImmunizationPathogenesisPneumococcal InfectionsPneumoniaProcessProductionPyruvatePyruvate Metabolism PathwayPyruvate OxidaseResearchRisk FactorsRoleSamplingSeminalStreptococcusStreptococcus pneumoniaeStreptococcus pneumoniae plY proteinTestingTherapeutic InterventionTimeToxinVirulenceWorkacetyl phosphatecell killingcytotoxicepidemiology studyexperienceexperimental studyglucose metabolismheart damagein vivomortalitymutantnonhuman primateoxidative damageprototypetargeted treatmenttempoltranscriptome sequencinguptake
项目摘要
ABSTRACT:
One-in-four adults hospitalized for community-acquired pneumonia (CAP) experience an adverse cardiac
event. Clinical epidemiological studies, as well as those performed in mice, non-human primates, and with
human autopsy samples indicate that Streptococcus pneumoniae (Spn), the leading cause of CAP, can invade
the heart from the bloodstream and cause direct cardiotoxicity. Within the myocardium Spn cause focal areas
of damage we have called microlesions and these disrupt contractility. One recent break-through in our
understanding of Spn pathogenesis was the observation that pneumococci are taken up by cardiomyocytes
and Spn kill these cells from within. What is more, the pore-forming toxin pneumolysin and Streptococcal
pyruvate oxidase (SpxB) derived H2O2 were both requisite for cardiotoxicity. Herein, our goal is to gain an
understanding of the events that take place within a cardiomyocyte immediately after Spn uptake.
Along such lines, results from in vitro and in vivo experiments, including dual-species RNA sequencing of Spn-
infected hearts, have revealed highly compelling connections between changes in carbon availability, H2O2
production, biofilm / cardiac microlesion formation, and pneumolysin production. Thus, we hypothesize that
glucose restriction encountered by Spn within a cardiomyocyte, and again in cardiac microlesions, results in
metabolic and gene expression changes that enhance bacterial cardiotoxicity. To test this hypothesis and learn
how pneumolysin and H2O2 work together to kill cardiomyocytes we will:
AIM 1: Determine how environmental glucose, metabolism, and virulence are interlinked. To elucidate
the basis, extent, and consequences of these connections we will: 1) determine how purposeful shunting of
pyruvate metabolism (by means of mutation) towards the production of acetate, lactate, and/or formate impacts
gene expression under high and low glucose conditions; 2) identify how Spn gene expression changes in
longitudinal fashion after bacterial uptake by a cardiomyocyte and how this is linked to changes in Spn
metabolism; 3) determine the importance of metabolism-linked genes to Spn survival within a cardiomyocyte,
killing of the cardiomyocyte, and the overall disease process.
AIM 2: Determine how bacterial derived H2O2, together with pneumolysin, kills cardiomyocytes. SpxB
derived H2O2 and pneumolysin are both required for Spn killing of cardiomyocytes; each alone is insufficient.
To determine why we will: 1) determine how varying production of H2O2 and pneumolysin together modulate
the form of cardiomyocyte death; 2) determine if H2O2 potentiates pneumolysin production, its release from
Spn, or host cell membrane targeting; and, 3) determine if SpxB-derived H2O2 contributes to the ion
dysregulation that has previously been implicated in pneumolysin-induced necroptosis. This aim, at its
completion, will advance our understanding of how Spn kills host cells.
抽象的:
四分之一因社区获得性肺炎 (CAP) 住院的成年人会出现心脏不良症状
事件。临床流行病学研究,以及在小鼠、非人类灵长类动物中进行的研究
人体尸检样本表明,CAP 的主要原因肺炎链球菌 (Spn) 可以侵入
从血液中进入心脏并引起直接心脏毒性。心肌内 Spn 引起焦点区域
我们称之为微损伤的损伤会破坏收缩性。我们最近取得的一项突破
对 Spn 发病机制的理解是观察到肺炎球菌被心肌细胞吸收
Spn 从内部杀死这些细胞。更重要的是,成孔毒素肺炎球菌溶血素和链球菌
丙酮酸氧化酶 (SpxB) 衍生的 H2O2 都是心脏毒性所必需的。在此,我们的目标是获得
了解 Spn 摄取后心肌细胞内立即发生的事件。
沿着这样的思路,体外和体内实验的结果,包括 Spn- 的双物种 RNA 测序
受感染的心脏,揭示了碳可用性变化与 H2O2 之间的高度引人注目的联系
产生、生物膜/心脏微病变形成和肺炎球菌溶血素产生。因此,我们假设
Spn 在心肌细胞内以及心脏微病变中遇到葡萄糖限制,导致
代谢和基因表达的变化会增强细菌的心脏毒性。为了检验这个假设并学习
肺炎球菌溶血素和 H2O2 如何协同作用杀死心肌细胞我们将:
目标 1:确定环境葡萄糖、新陈代谢和毒力如何相互关联。阐明
这些联系的基础、程度和后果,我们将:1)确定如何有目的地分流
丙酮酸代谢(通过突变)对乙酸盐、乳酸和/或甲酸盐的产生产生影响
高糖和低糖条件下的基因表达; 2) 确定 Spn 基因表达如何变化
心肌细胞吸收细菌后的纵向时尚及其与 Spn 变化的关系
代谢; 3) 确定代谢相关基因对心肌细胞内 Spn 存活的重要性,
心肌细胞的杀死,以及整个疾病过程。
目标 2:确定细菌来源的 H2O2 与肺炎球菌溶血素如何杀死心肌细胞。斯普克斯B
衍生的 H2O2 和肺炎球菌溶血素都是 Spn 杀死心肌细胞所必需的;单独一个是不够的。
为了确定原因,我们将: 1) 确定 H2O2 和肺炎球菌溶血素的不同产量如何共同调节
心肌细胞死亡的形式; 2) 确定 H2O2 是否增强肺炎球菌溶血素的产生及其释放
Spn,或宿主细胞膜靶向; 3) 确定 SpxB 衍生的 H2O2 是否对离子有贡献
此前曾被认为与肺炎球菌溶血素诱导的坏死性凋亡有关。这一目标,旨在
完成后,将加深我们对 Spn 如何杀死宿主细胞的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlos J Orihuela其他文献
Carlos J Orihuela的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carlos J Orihuela', 18)}}的其他基金
Cardiomyocyte self-defense against Streptococcus pneumoniae
心肌细胞对抗肺炎链球菌的自我防御
- 批准号:
10639102 - 财政年份:2023
- 资助金额:
$ 45.55万 - 项目类别:
Molecular mechanisms underlying organ penetration in disseminated pneumococcal infection
播散性肺炎球菌感染器官穿透的分子机制
- 批准号:
10555548 - 财政年份:2022
- 资助金额:
$ 45.55万 - 项目类别:
PspA binds necroptotic cells to cause disease and transmit
PspA 结合坏死性凋亡细胞引起疾病并传播
- 批准号:
10269932 - 财政年份:2020
- 资助金额:
$ 45.55万 - 项目类别:
PspA binds necroptotic cells to cause disease and transmit
PspA 结合坏死性凋亡细胞引起疾病并传播
- 批准号:
10470379 - 财政年份:2020
- 资助金额:
$ 45.55万 - 项目类别:
PspA binds necroptotic cells to cause disease and transmit
PspA 结合坏死性凋亡细胞引起疾病并传播
- 批准号:
10685976 - 财政年份:2020
- 资助金额:
$ 45.55万 - 项目类别:
Inhibition of necroptosis during inflamm-aging and pneumonia
抑制炎症老化和肺炎期间的坏死性凋亡
- 批准号:
9248088 - 财政年份:2016
- 资助金额:
$ 45.55万 - 项目类别:
Cardiac microlesion formation during invasive pneumococcal disease
侵袭性肺炎球菌疾病期间心脏微病变的形成
- 批准号:
9179589 - 财政年份:2015
- 资助金额:
$ 45.55万 - 项目类别:
Cardiac microlesion formation during invasive pneumococcal disease
侵袭性肺炎球菌疾病期间心脏微病变的形成
- 批准号:
10307592 - 财政年份:2014
- 资助金额:
$ 45.55万 - 项目类别:
Cardiac microlesion formation during invasive pneumococcal disease
侵袭性肺炎球菌疾病期间心脏微病变的形成
- 批准号:
10517516 - 财政年份:2014
- 资助金额:
$ 45.55万 - 项目类别:
Statins protect against adverse cardiac events during pneumonia
他汀类药物可预防肺炎期间的不良心脏事件
- 批准号:
8245700 - 财政年份:2011
- 资助金额:
$ 45.55万 - 项目类别:
相似国自然基金
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Cardiac microlesion formation during invasive pneumococcal disease
侵袭性肺炎球菌疾病期间心脏微病变的形成
- 批准号:
10307592 - 财政年份:2014
- 资助金额:
$ 45.55万 - 项目类别:
Cardiac microlesion formation during invasive pneumococcal disease
侵袭性肺炎球菌疾病期间心脏微病变的形成
- 批准号:
10517516 - 财政年份:2014
- 资助金额:
$ 45.55万 - 项目类别:
Dynamic Regulation of Erythropoietin Gene Expression in Mammals
哺乳动物促红细胞生成素基因表达的动态调控
- 批准号:
8963422 - 财政年份:2009
- 资助金额:
$ 45.55万 - 项目类别:
Dynamic Regulation of Erythropoietin Gene Expression in Mammals
哺乳动物促红细胞生成素基因表达的动态调控
- 批准号:
8442054 - 财政年份:2009
- 资助金额:
$ 45.55万 - 项目类别:
Dynamic Regulation of Erythropoietin Gene Expression in Mammals
哺乳动物促红细胞生成素基因表达的动态调控
- 批准号:
8762386 - 财政年份:2009
- 资助金额:
$ 45.55万 - 项目类别: