Elucidating the Mechanisms of Lipid Droplet Protein Degradation
阐明脂滴蛋白质降解的机制
基本信息
- 批准号:9891849
- 负责人:
- 金额:$ 4.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectBacteriaBiochemistryBiogenesisBiological AssayCRISPR screenCandidate Disease GeneCardiovascular DiseasesCell LineCellsCellular biologyCholesterol EstersComplementDefectDegradation PathwayDevelopmentDiseaseEndoplasmic ReticulumEnzymesEpidemicExhibitsFatty AcidsFatty LiverFibrinogenFlow CytometryFluorescenceFluorescence MicroscopyFollow-Up StudiesGenesGeneticGenus HippocampusGoalsGreen Fluorescent ProteinsGuide RNAHealthHeartHomeostasisHumanHydrophobicityImpairmentIndividualInsulin ResistanceKnock-outKnowledgeLipidsLipolysisLiverMalignant Epithelial CellMeasuresMediatingMetabolicMetabolic DiseasesMetabolismMolecularObesityOrganellesPathogenesisPathologyPathway interactionsPhospholipidsPlantsPlayPrevalencePrimary carcinoma of the liver cellsProcessProteinsProteomePublic HealthRegulationReporterReportingResearchRoleSystemTissuesTriglyceridesUbiquitinUbiquitin-Conjugating EnzymesUbiquitinationWestern Blottingbasecandidate validationenergy balanceenzyme pathwayfunctional genomicsgenetic regulatory proteingenome wide screengenome-wideinsightlipid metabolismmonolayermulticatalytic endopeptidase complexnon-alcoholic fatty livernovelnovel therapeuticsoverexpressionoxidationperilipinprotein degradationresponsescreeningubiquitin-protein ligase
项目摘要
PROJECT SUMMARY
The growing global epidemic of metabolic disease is a pressing public health issue. As the prevalence of
disorders such as obesity, insulin resistance, and nonalcoholic fatty liver continue to climb, the need for a
thorough understanding of cellular lipid storage mechanisms has become increasingly imperative. Most
metabolic disorders involve the aberrant accumulation of lipid in tissues such as the liver and heart, leading to
devastating systemic health effects. Within cells, lipids are stored in cytosolic organelles called lipid droplets
(LDs), which consist of a neutral lipid core of triacylglycerols and cholesterol esters bounded by a phospholipid
monolayer. Associated with the monolayer are multiple regulatory proteins and enzymes that control the dynamic
sequestration and release of the lipid reserves, allowing LD proteins to influence the metabolism of the entire
cell. Although LD proteins have essential roles in maintaining cellular lipid homeostasis, little is known regarding
the regulation of LD proteins themselves – in particular, the pathways that control LD protein abundance.
Although several studies report a role for the ubiquitin-proteasome system (UPS) in modulating LD protein levels,
the identities of the required ubiquitination machinery (e.g. E3 ubiquitin ligases and E2 ubiquitin conjugating
enzymes) and the pathways by which they exert control remain unclear. To address these fundamental
questions, I propose 1) a genome-wide, fluorescence-based CRISPR/Cas9 screen to identify the degradation
pathway of the LD protein perilipin-2 (PLIN2), and 2) follow-up studies to interrogate how impaired PLIN2
degradation impacts global cellular metabolism. I have characterized a human hepatoma Cas9-expressing
fluorescent reporter cell line in which endogenous PLIN2 is tagged with GFP. Flow cytometry, Western blotting,
and fluorescence microscopy analyses confirmed that PLIN2-GFP is expressed at endogenous levels, localizes
to LDs, and is degraded by the proteasome. The validated PLIN2-GFP cell line was employed in a pilot screen
of a 10-guide-per-gene lentiviral sublibrary of single guide RNAs (sgRNAs) enriched in UPS genes. This screen
identified several candidate UPS factors that I hypothesize are involved in PLIN2 degradation. My proposed
studies include the completion of a comprehensive, genome-wide screen, validation of candidate genes,
characterization of PLIN2 degradation pathways, and examination of the functional consequences of impaired
PLIN2 clearance. These studies will elucidate the mechanisms of LD protein regulation by the UPS, providing
novel insights into how cells maintain lipid homeostasis. Knowledge of LD protein degradation pathways will
allow for an understanding of how alterations in LD protein regulation contribute to the pathogenesis of metabolic
disease.
项目摘要
代谢疾病的全球流行病日益严重,这是一个紧迫的公共卫生问题。作为流行
肥胖,胰岛素抵抗和非酒精性脂肪肝等疾病继续攀升,需要
对细胞脂质储存机制的透彻了解变得越来越急切。最多
代谢性疾病涉及脂肪在肝脏和心脏等组织中的异常积累,导致
毁灭性的系统性健康影响。在细胞内,脂质存储在称为脂质液滴的胞质细胞器中
(LDS),由三酰甘油的中性脂质核和由磷脂界定的胆固醇酯和胆固醇酯组成
单层。与单层相关的是多种调节蛋白和控制动态的酶
脂质储量的固相和释放,从而使LD蛋白能够影响整个的代谢
尽管LD蛋白在维持细胞脂质体内稳态方面具有重要作用,但关于
LD蛋白本身的调节 - 特别是控制LD蛋白丰度的途径。
尽管几项研究报告了泛素 - 蛋白酶体系统(UPS)在调节LD蛋白水平中的作用,但
所需的泛素化机制的身份(例如E3泛素连接酶和E2泛素结合
酶)及其施加控制的途径尚不清楚。解决这些基本
问题,我建议1)全基因组,基于荧光的CRISPR/CAS9屏幕以识别降解
LD蛋白Peripin-2(PLIN2)的途径和2)随访研究,以询问PLIN2如何受损
降解会影响全球细胞代谢。我已经表征了人类肝癌的表达
内源性PLIN2用GFP标记的荧光报告细胞系。流式细胞仪,蛋白质印迹,
荧光显微镜分析证实,PLIN2-GFP在内源水平上表达,本地化
到LDS,并被蛋白酶体降解。经过验证的PLIN2-GFP细胞系在飞行员屏幕上进行
富含UPS基因的单个指南RNA(SGRNA)的每条慢病毒s蓝曲线的10指导性sublibrary。这个屏幕
确定了我假设的几个候选UPS因素与PLIN2降解有关。我提出的
研究包括全面,全基因组筛查的完整性,验证候选基因的验证,
PLIN2降解途径的表征以及检查受损的功能后果
PLIN2间隙。这些研究将通过UPS阐明LD蛋白调节的机制,提供
关于细胞如何保持脂质稳态的新颖见解。 LD蛋白降解途径的知识将
允许了解LD蛋白调节中的改变如何有助于代谢的发病机理
疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Melissa Roberts其他文献
Melissa Roberts的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Melissa Roberts', 18)}}的其他基金
Elucidating the Mechanisms of Lipid Droplet Protein Degradation
阐明脂滴蛋白质降解的机制
- 批准号:
9760318 - 财政年份:2019
- 资助金额:
$ 4.1万 - 项目类别:
相似国自然基金
盐度对趋磁细菌生物矿化的影响及机理研究
- 批准号:42304079
- 批准年份:2023
- 资助金额:20.00 万元
- 项目类别:青年科学基金项目
水平基因转移对蓝细菌基因组演化及生态适应性的影响
- 批准号:32370009
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
猪粪还田中重金属—抗生素复合污染对土壤细菌耐药性的影响机制
- 批准号:52300226
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
铁卟啉在细菌外膜囊泡OMVs所致脓毒症DIC中的作用及机制研究
- 批准号:82302451
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
海洋噬菌体通过铁载体转运途径感染蓝细菌影响铁迁移的机制
- 批准号:42306113
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
MAIT cells in lupus skin disease and photosensitivity
MAIT 细胞在狼疮皮肤病和光敏性中的作用
- 批准号:
10556664 - 财政年份:2023
- 资助金额:
$ 4.1万 - 项目类别:
Mechanisms of Metal Ion Homeostasis of Oral Streptococci
口腔链球菌金属离子稳态机制
- 批准号:
10680956 - 财政年份:2023
- 资助金额:
$ 4.1万 - 项目类别:
Mechanistic characterization of vaginal microbiome-metabolome associations and metabolite-mediated host inflammation
阴道微生物组-代谢组关联和代谢物介导的宿主炎症的机制特征
- 批准号:
10663410 - 财政年份:2023
- 资助金额:
$ 4.1万 - 项目类别:
Using Salmonella Pathogenesis and Cell Biology as a Discovery Tool
使用沙门氏菌发病机制和细胞生物学作为发现工具
- 批准号:
10665946 - 财政年份:2023
- 资助金额:
$ 4.1万 - 项目类别:
Copper Sensing in Uropathogenic Escherichia coli
尿路致病性大肠杆菌中的铜感应
- 批准号:
10604449 - 财政年份:2023
- 资助金额:
$ 4.1万 - 项目类别: