Center for the comprehensive analysis of somatic copy-number alterations in cancer
癌症体细胞拷贝数改变综合分析中心
基本信息
- 批准号:9764290
- 负责人:
- 金额:$ 44.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-15 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAllelesBiologicalCancer DiagnosticsCancer EtiologyCharacteristicsChromosomal InstabilityClinicalCollaborationsCommunitiesComplexComputing MethodologiesCustomDNADataData SetDevelopmentDiagnosisDiagnosticEnsureEpigenetic ProcessEventExpression ProfilingGenerationsGenomeGenome Data Analysis CenterGenome Data Analysis NetworkGenotypeGoalsHigh-Throughput Nucleotide SequencingHumanHybridsImageryInflammatory InfiltrateInternationalIsochromosomesLeadLightLoss of HeterozygosityMalignant NeoplasmsMethodsMethylationMolecularMutationOncogenesOther GeneticsPatternPersonsPloidiesPopulationQuality ControlRecording of previous eventsRecurrenceResearchResearch PersonnelResolutionSamplingServicesStructureTestingThe Cancer Genome AtlasTherapeuticTimeTumor Suppressor GenesTumor Suppressor ProteinsUpdateVariantarmbasecancer cellcancer genomecancer subtypeschromothripsisclinical careclinical phenotypeclinically relevantexome sequencingexperiencegenome analysisgenome sequencinggenome-widegenomic dataimprovedinnovationinsightmembermolecular subtypesnovelnovel diagnosticsnovel therapeutic interventiontranscriptome sequencingtumorweb portalwhole genomeworking group
项目摘要
Abstract
Somatic copy number alterations (SCNAs) are a type of mutation in cancer that affect more of the cancer
genome than any other genetic event. SCNAs often contribute to cancer development and progression, and
detecting them can contribute to the development of diagnostic and therapeutic advances in clinical care. As
part of The Cancer Genome Atlas (TCGA) project our group characterized SCNAs for over 10,000 tumors
across 30 different tumor types. Through these efforts we developed state-of-the-art methods to detect and
interpret SCNAs, and used these to discover SCNAs that recur across many tumors and likely contribute to the
formation of these tumors, the candidate tumor suppressors and oncogenes these SCNAs target, and novel
clinically relevant SCNA-based cancer subtypes. We have also developed methods to detect SCNAs and the
rearrangements that bound them from high-throughput sequencing data of the type being collected by the
Genomics Data Analysis Network (GDAN). These methods resolve SCNAs, the mechanisms by which they
arise, and their potential biological consequences, in much greater detail than could be done with microarray
data generated for TCGA. Leveraging our experience in SCNA analysis, we propose to establish a Genomics
Data Analysis Center (GDAC) that will service the GDAN with comprehensive, advanced analyses of SCNAs
and the rearrangements that bound them, with the goals of identifying biologically and clinically relevant
patterns of SCNA and disseminating this information to the GDAN and wider research community. We will:
1) Generate basic and quality control information for each tumor. We determine the fraction of cancer cells
within each tumor (tumor purity) and the average copy number genomewide (ploidy). We will also test every
putative pair of tumor and normal DNA samples to ensure that they did originate in the same person.
2) Characterize SCNAs and rearrangements in each tumor, including clonal and subclonal amplifications,
deletions, loss of heterozygosity, and complex events like chromothripsis, firestorms, and isochromosomes.
3) Identify recurrent SCNAs and rearrangements that are likely to drive tumor development and
progression, and the oncogenes and tumor suppressor genes they likely target.
4) Classify tumors by previously identified SCNA subtypes and discover new subtypes. We will identify
SCNAs and genomewide patterns of SCNA that correlate with clinical and molecular features of tumors.
5) Integrate with the GDAN and research community. We will integrate our analytic pipelines with those of
other GDACs; immerse ourselves in cooperative Analysis Working Groups formed by the GDAN to refine those
analyses in light of the most important questions; make our analysis results available to other members of the
GDAN in real time; and disseminate those results to the wider research community through our existing web
portal and by working closely with other GDACs to integrate our analyses into their web portals.
Our results will inform how SCNAs cause cancer and indicate new diagnostic and therapeutic strategies.
抽象的
体拷贝数改变(SCNA)是癌症中一种突变,会影响更多的癌症
基因组比任何其他遗传事件。 SCNA经常有助于癌症的发展和进展,以及
检测它们可以有助于临床护理中诊断和治疗进步的发展。作为
癌症基因组图集(TCGA)的一部分项目我们的小组表征了10,000多个肿瘤的SCNA
在30种不同的肿瘤类型中。通过这些努力,我们开发了最先进的方法来检测和
解释SCNA,并用这些发现发现在许多肿瘤中复发的SCNA,并可能有助于
这些肿瘤的形成,候选肿瘤抑制因子和癌基因这些SCNA靶标以及新型
临床上相关的基于SCNA的癌症亚型。我们还开发了检测SCNA和
重排将它们与由高通量测序数据绑定到的类型的高通量测序数据
基因组数据分析网络(GDAN)。这些方法可以解决SCNA,即它们的机制
出现及其潜在的生物学后果,比微阵列要多得多
为TCGA生成的数据。利用我们在SCNA分析中的经验,我们建议建立基因组学
数据分析中心(GDAC)将通过SCNA的全面,高级分析为GDAN提供服务
以及将它们束缚的重排,其目标是在生物学上和临床上相关
SCNA的模式并将这些信息传播给GDAN和更广泛的研究社区。我们将:
1)为每个肿瘤生成基本和质量控制信息。我们确定癌细胞的分数
在每个肿瘤内(肿瘤纯度)和平均拷贝数全基因组(ploidy)。我们还将测试每个
推定的一对肿瘤和正常的DNA样品,以确保它们确实起源于同一人。
2)表征每个肿瘤中的SCNA和重排,包括克隆和亚克隆扩增,
删除,杂合性的丧失以及复杂的事件,例如铬骨,大火和同色粒体。
3)确定可能驱动肿瘤发展的经常性SCNA和重排
进展,以及它们可能针对的癌基因和肿瘤抑制基因。
4)通过先前鉴定的SCNA亚型对肿瘤进行分类并发现新的亚型。我们将确定
SCNA和全基因组模式与肿瘤的临床和分子特征相关。
5)与GDAN和研究社区集成。我们将将我们的分析管道与
其他GDAC;将自己沉浸在GDAN成立的合作分析工作组中,以完善这些工作组
根据最重要的问题进行分析;使我们的分析结果可用于其他成员
GDAN实时;并通过我们现有的网络将这些结果传播给更广泛的研究社区
门户网站并与其他GDAC紧密合作,将我们的分析集成到其网站门户中。
我们的结果将告知SCNA如何引起癌症并指出新的诊断和治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RAMEEN BEROUKHIM其他文献
RAMEEN BEROUKHIM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RAMEEN BEROUKHIM', 18)}}的其他基金
Synthetic lethalities to cell cycle disruption in glioma
神经胶质瘤细胞周期破坏的综合致死率
- 批准号:
10443386 - 财政年份:2022
- 资助金额:
$ 44.03万 - 项目类别:
Synthetic lethalities to cell cycle disruption in glioma
神经胶质瘤细胞周期破坏的综合致死率
- 批准号:
10621824 - 财政年份:2022
- 资助金额:
$ 44.03万 - 项目类别:
Center for the Comprehensive Analysis of Cancer Somatic Copy-Number Alterations, Rearrangements, and Long-Read Sequencing Data
癌症体细胞拷贝数改变、重排和长读长测序数据综合分析中心
- 批准号:
10301949 - 财政年份:2021
- 资助金额:
$ 44.03万 - 项目类别:
Center for the Comprehensive Analysis of Cancer Somatic Copy-Number Alterations, Rearrangements, and Long-Read Sequencing Data
癌症体细胞拷贝数改变、重排和长读长测序数据综合分析中心
- 批准号:
10491146 - 财政年份:2021
- 资助金额:
$ 44.03万 - 项目类别:
Characterizing TP53 and PPM1D mutations as resistance drivers to radiation therapy in Diffuse Intrinsic Pontine Gliomas
描述 TP53 和 PPM1D 突变作为弥漫性内源性桥脑胶质瘤放射治疗耐药驱动因素
- 批准号:
10245071 - 财政年份:2017
- 资助金额:
$ 44.03万 - 项目类别:
Center for the comprehensive analysis of somatic copy-number alterations in cancer
癌症体细胞拷贝数改变综合分析中心
- 批准号:
9352796 - 财政年份:2016
- 资助金额:
$ 44.03万 - 项目类别:
Evolution of gliomas during treatment and resistance
神经胶质瘤在治疗和耐药过程中的演变
- 批准号:
10437904 - 财政年份:2015
- 资助金额:
$ 44.03万 - 项目类别:
Genetic evolution of glioblastomas during radiation and temozolomide therapy
放疗和替莫唑胺治疗期间胶质母细胞瘤的遗传进化
- 批准号:
9262911 - 财政年份:2015
- 资助金额:
$ 44.03万 - 项目类别:
Evolution of gliomas during treatment and resistance
神经胶质瘤在治疗和耐药过程中的演变
- 批准号:
10656320 - 财政年份:2015
- 资助金额:
$ 44.03万 - 项目类别:
Evolution of gliomas during treatment and resistance
神经胶质瘤在治疗和耐药过程中的演变
- 批准号:
10298648 - 财政年份:2015
- 资助金额:
$ 44.03万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The immunogenicity and pathogenicity of HLA-DQ in solid organ transplantation
HLA-DQ在实体器官移植中的免疫原性和致病性
- 批准号:
10658665 - 财政年份:2023
- 资助金额:
$ 44.03万 - 项目类别:
Germline Genetic Modifiers of Radiation Response
辐射反应的种系遗传修饰剂
- 批准号:
10741022 - 财政年份:2023
- 资助金额:
$ 44.03万 - 项目类别:
The predicative values of vascular and metabolic disorders for risk of incident mild cognitive impairment and dementia
血管和代谢紊乱对发生轻度认知障碍和痴呆风险的预测价值
- 批准号:
10661996 - 财政年份:2023
- 资助金额:
$ 44.03万 - 项目类别:
Molecular origins and evolution to chemoresistance in germ cell tumors
生殖细胞肿瘤中化学耐药性的分子起源和进化
- 批准号:
10443070 - 财政年份:2023
- 资助金额:
$ 44.03万 - 项目类别:
Systematic Characterization and Targeting of Neomorphic Drivers in Cancer
癌症新形态驱动因素的系统表征和靶向
- 批准号:
10717973 - 财政年份:2023
- 资助金额:
$ 44.03万 - 项目类别: